参考文献/References:
[1] LI Dong,QIAO Zhonghua.On the stabilization size of semi-implicit Fourier-spectral methods for 3D Cahn-Hilliard equations[J].Communications in Mathematical Scien-ces,2017,15(6):1489-1506.
[2] GUO Ruihan,XU Yan.Semi-implicit spectral deferred correction method based on the invariant energy quadratization approach for phase field problems[J].Communications in Computational Physics,2019,26(1):87-113.
[3] LIU Fei,SHEN Jie.Stabilized semi-implicit spectral deferred correction methods for Allen-Cahn and Cahn-Hilliard equations[J].Mathematical Methods in the Applied Sciences,2015,38(18):4564-4575.
[4] SHEN Jie,YANG Xiaofeng.Numerical approximations of Allen-Cahn and Cahn-Hilliard equations[J].Discrete and Continuous Dynamical Systems,2010,28(4):1669-1691.
[5] AN Jing,SHEN Jie.Spectral approximation to a transmission eigenvalue problem and its applications to an inverse problem[J].Computers & Mathematics with Applications,2015,69(10):1132-1143.
[6] COLTON D,MONK P,SUN Jiguang.Analytical and computational methods for transmission eigenvalues[J].Inverse Problems,2010,26(4):45011.
[7] JI Xia,SUN Jiguang,XIE Hehu.A multigrid method for helmholtz transmission eigenvalue problems[J].Journal of Scientific Computing,2014,60(2):276-294.
[8] SUN Jiguang.Iterative methods for transmission eigenva-lues[J].SIAM Journal on Numerical Analysis,2011,49(5):1860-1874.
[9] YANG Yidu,BI Hai,HAN Jiayu,et al.Mixed methods for the helmholtz transmission eigenvalues[J].SIAM Journal on Scientific Computing,2016,38(3):1383-1403.
[10] REN Shixian,TAN Ting,AN Jing.An efficient spectral-Galerkin approximation based on dimension reduction scheme for transmission eigenvalues in polar geometries[J].Computers & Mathematics with Applications,2020,80(5):940-955.
[11] CANUTO C.Eigenvalue approximations by mixed methods[J].RAIRO Analyse Numérique,1978,12(1):27-50.
[12] Mercier B,Osborn J E,Rappaz J,et al.Eigenvalue approximation by mixed and hybrid methods[J].Mathematics of Computation,1981,36(154):427-453.
[13] CHEN Wei,LIN Qun.Approximation of an eigenvalue problem associated with the Stokes problem by the stream function-vorticity-pressure method[J].Applications of Mathematics,2006,51(1):73-88.
[14] YANG Yidu,JIANG Wei.Upper spectral bounds and a posteriori error analysis of several mixed finite element approximations for the Stokes eigenvalue problem[J].Scien-ce China:Mathematics,2013,56(6):1313-1330.
[15] SHEN Jie,TANG Tao.Spectral and high-order methods with applications[M].Beijing:Science Press,2006.
[16] SHEN Jie,TANG Tao,WANG Lilian.Spectral methods:algorithms, analysis and applications[M].New York:Springer Science & Business Media,2011.
[17] 罗振东.混合有限元法基础及其应用[M].北京:科学出版社,2006.
[18] 李开泰,黄艾香,黄庆怀.有限元方法及其应用[M].北京:科学出版社,2006.