[1]王 浩,王君婷,陈永金*,等.黄河三角洲不同柽柳群落对土壤酶活性空间分布的影响[J].江西师范大学学报(自然科学版),2023,(06):605-614.[doi:10.16357/j.cnki.issn1000-5862.2023.06.08]
 WANG Hao,WANG Junting,CHEN Yongjin*,et al.The Effects of Different Tamarix Shrubs Communities on Spatial Distribution of Soil Enzyme Activities in Yellow River Delta[J].Journal of Jiangxi Normal University:Natural Science Edition,2023,(06):605-614.[doi:10.16357/j.cnki.issn1000-5862.2023.06.08]
点击复制

黄河三角洲不同柽柳群落对土壤酶活性空间分布的影响()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年06期
页码:
605-614
栏目:
环境科学
出版日期:
2023-11-25

文章信息/Info

Title:
The Effects of Different Tamarix Shrubs Communities on Spatial Distribution of Soil Enzyme Activities in Yellow River Delta
文章编号:
1000-5862(2023)06-0605-10
作者:
王 浩王君婷陈永金*邓焕广张忠诚吴傲琳
(聊城大学地理与环境学院,山东 聊城 252059)
Author(s):
WANG HaoWANG JuntingCHEN Yongjin*DENG HuanguangZHANG ZhongchengWU Aolin
(School of Geography and Environment,Liaocheng University,Liaocheng Shandong 252059,China)
关键词:
柽柳 灌丛 黄河三角洲 酶活性 演替
Keywords:
Tamarix shrub Yellow River Delta enzyme activity succession
分类号:
Q 948
DOI:
10.16357/j.cnki.issn1000-5862.2023.06.08
文献标志码:
A
摘要:
该文以黄河三角洲新生湿地的柽柳-碱蓬(Tamarix-Suaeda)群落和柽柳-禾草(Tamarix-Gramineae)群落为研究对象,分析这2种柽柳群落对土壤酶分布规律的影响及其与土壤理化性质的关系.研究结果表明:1)柽柳-禾草群落脲酶活性随与根茎的距离增加以及土层深度增加而逐渐减小,最大值为0.376; 柽柳-碱蓬群落脲酶活性随与根茎的距离增加先减小后增加,随土层深度增加先增大后减小,最大值为0.271.柽柳-禾草群落脲酶活性有极其显著的冠下与冠缘聚集特征,最大富集率分别为1.68和1.47; 柽柳-碱蓬群落冠下和冠缘均无聚集特征.2)柽柳-禾草和柽柳-碱蓬群落土壤过氧化氢酶活性随土层深度增加均呈先增大后减小的趋势,最大值分别为1.352和1.602; 它们随与根茎的距离增加所呈现的规律不同,最大值分别为1.200和1.300.这2种柽柳群落过氧化氢酶活性均无明显聚集性.3)2种柽柳群落土壤酶活性与土壤含水率、有机碳及pH值有显著正相关性,与土壤电导率有显著负相关性.柽柳灌丛群落对酶有一定的聚集性,这有利于群落的正向演替.
Abstract:
In this study,the Tamarix-Suaeda and Tamarix-Gramineae shrub communities in the new wetland of the Yellow River Delta(YRD)are chosen to study the soil enzyme activities spatial distribution characteristics and the relationship between soil enzyme activity and physicochemical properties.The results show that urease activity in Tamarix-Gramineae shrub communities decreases as the distance from the center of the shrub and/or the soil depth increases,with the maximum value 0.376.As the distance from the center of the shrub increases,the soil enzyme activities of Tamarix-Suaeda shrub communities reduce and then increase,at the same time,increase and then decrease as the soil depth increases, with the maximum value 0.271.Urease activity is significantly concentrated at the canopy and the canopy edge of the Tamarix-Gramineae communities,and the maximum concentration factors are 1.68 and 1.47, respectively.However,there is no significant enrichment of soil enzyme activity in the Tamarix-Suaeda community. Catalase activity in Tamarix-Gramineae and Tamarix-Suaeda shrub communities all increase and then decreased as the soil depth increases,and maximum values are 1.352 and 1.602, respectively.As the distance from the center of the shrub increases,they exhibit different patterns,and the maximum values are 1.2 and 1.3,respectively.There is no significant enrichment of catalase activity in the two types of Tamarix shrub communities.The soil enzyme activity of the two types of Tamarix shrub communities has a significant positive correlation with soil moisture,soil organic carbon,pH and negative correlation with electric conductivity(EC).Tamarix shrub communities have certain aggregation to enzymes,which is conducive to constructive community succession and provides data support for ecological sustainability and soil improvement in the Yellow River Delta region.

参考文献/References:

[1] 邓祥征,张帆,刘刚.黄河三角洲生态保护与可持续发展研究[J].人民黄河,2020,42(9):117-122.
[2] 陈为峰,周维芝,史衍玺.黄河三角洲湿地面临的问题及其保护[J].农业环境科学学报,2003,22(4):499-502.
[3] 孙权,陈茹,宋乃平,等.宁南黄土丘陵区马铃薯连作土壤养分、酶活性和微生物区系的演变[J].水土保持学报,2010,24(6):208-212.
[4] 王瑞,宋祥云,柳新伟.黄河三角洲不同植被类型土壤酶活性的季节变化[J].生态环境学报,2022,31(1):62-69.
[5] 莫雪,陈斐杰,游冲,等.黄河三角洲不同植物群落土壤酶活性特征及影响因子分析[J].环境科学,2020,41(2):895-904.
[6] JING Changliang,XU Zongchang,ZOU Ping,et al.Coastal halophytes alter properties and microbial community structure of the saline soils in the Yellow River Delta,China[J].Applied Soil Ecology,2019,134:1-7.
[7] 郭嘉,陈纪香,于一雷,等.黄河三角洲湿地典型盐生植物群落土壤酶活性研究[J].湿地科学与管理,2020,16(1):55-59.
[8] 周晓明.黄河三角洲湿地土壤微生物多样性及土壤酶活性的研究[D].曲阜:曲阜师范大学,2018.
[9] 李凤霞,王学琴,郭永忠,等.宁夏引黄灌区不同盐化程度土壤酶活性及微生物多样性研究[J].水土保持研究,2013,20(1):61-65.
[10] 王浩,陈永金,刘加珍,等.黄河三角洲新生湿地3种柽柳灌丛对土壤有机碳空间分布的影响研究[J].生态环境学报,2022,31(1):9-16.
[11] ZHANG Xuliang,ZHANG Zhaohui,WANG Wei,et al.Vegetation successions of coastal wetlands in Southern Laizhou Bay,Bohai Sea,Northern China,influenced by the changes in relative surface elevation and soil salinity[J].Journal of Environmental Management,2021,293:112964.
[12] 宋创业,刘高焕,刘庆生,等.黄河三角洲植物群落分布格局及其影响因素[J].生态学杂志,2008,27(12):2042-2048.
[13] 李君,赵成义,朱宏,等.柽柳(Tamarix spp.)和梭梭(Haloxylon ammodendron)的“肥岛”效应[J].生态学报,2007,27(12):5138-5147.
[14] 陈佳,姚成硕,林勇明,等.武夷山林地土壤酶活性差异及土壤肥力质量评价[J].山地学报,2021,39(2):194-206.
[15] 马晓飞,李艳红,杨爱霞,等.新疆甘家湖湿地边缘带土壤酶活性研究[J].干旱区研究,2012,29(3):405-412.
[16] 吴强建,胡梦蝶,侯松峰,等.减氮配施生物炭基肥对蜜柚土壤理化性质及酶活性的影响[J].河南农业大学学报,2022,56(5):732-741.
[17] KRAVCHENKO A N,GUBER A K,RAZAVI B S,et al.Spatial patterns of extracellular enzymes:combining X-ray computed micro-tomography and 2D zymography[J].Soil Biology and Biochemistry,2019,135:411-419.
[18] 刘玉槐,魏晓梦,祝贞科,等.土壤原位酶谱技术研究进展[J].土壤通报,2017,48(5):1268-1274.
[19] 黄冬琳,同斯捷,岳良,等.原位酶谱技术分析旱地长期覆盖下根际酶活性空间分布[J].农业工程学报,2022,38(5):123-130.
[20] 中华人民共和国农业部.土壤有机质测定法:NY/T 85—1988[S].北京:中国标准出版社,1988:1-4.
[21] 中华人民共和国生态环境部.土壤pH的测定电位法:HJ 962—2018[S].北京:中国标准出版社,2018:1-3.
[22] 中华人民共和国环境保护部.土壤电导率的测定电极法:HJ 802—2016[S].北京:中国标准出版社,2016:1-4.
[23] 王玉功,刘婧晶,刘贻熙,等.苯酚-次氯酸钠比色法测定土壤脲酶活性影响因素的研究[J].土壤通报,2019,50(5):1166-1170.
[24] DICK R P,BREAKWELL D P,TURCO R F.Soil enzyme activities and biodiversity measurements as integrating micro biological indicators[M]∥DORAN J W,JONES A J.Methods for assessing soil quality.Madison: Soil Science Society of America,1997:247-272.
[25] 张萍.西双版纳次生林土壤微生物生态分布及其生化特性的研究[J].生态学杂志,1995,14(1):21-26.
[26] 宗巧鱼,艾宁,刘广全,等.撂荒年限对陕北黄土区山地枣林深层土壤有机碳的影响[J].植物科学学报,2021,39(1):42-49.
[27] YANG Liu,LAI Liming,ZHOU Jihua,et al.Enzyme and osmotic adjustment compounds of key species can help explain shrub encroachment in a semiarid sandy grassland[J].Ecological Indicators,2019,101:541-551.
[28]DIBNER S,MARTIN L,THIBAUT T,et al.Consistent genetic divergence observed among pelagic Sargassum morphotypes in the Western North Atlantic[J].Marine Ecology:an Evolutionary Perspective,2022,43(1):e12691.
[29] 王秀梅,安毅,秦莉,等.镉胁迫下土壤理化因子与过氧化氢酶活性的通径分析[J].中国农学通报,2018,34(11):59-65.
[30] DONG Xiwen,ZHANG Xiaoke,BAO Xuelian,et al.Spatial distribution of soil nutrients after the establishment of sand-fixing shrubs on sand dune[J].Plant, Soil and Environment,2009,55(7):288-294.
[31] 李君.准格尔盆地南缘柽柳(Tamarix)、梭梭(Haloxylon ammodendron)的“肥岛”效应研究[D].乌鲁木齐:中国科学院新疆生态与地理研究所,2007.
[32] 乔文静,戴银月,张伟,等.黄土丘陵区撂荒恢复过程中植物群落组成与土壤养分及酶活性变化的关系[J].环境科学,2018,39(12):5687-5698.
[33] 郭曼,郑粉莉,和文祥,等.黄土丘陵区不同退耕年限植被多样性变化及其与土壤养分和酶活性的关系[J].土壤学报,2010,47(5):979-986.
[34] 钟泽坤,杨改河,任成杰,等.黄土丘陵区撂荒农田土壤酶活性及酶化学计量变化特征[J].环境科学,2021,42(1):411-421.
[35] 白世红,马风云,侯栋,等.黄河三角洲植被演替过程种群生态位变化研究[J].中国生态农业学报,2010,18(3):581-587.
[36] HAN Jinjun,WANG Jianping,CHEN Liang,et al.Driving factors of desertification in Qaidam Basin,China:an 18-year analysis using the geographic detector model[J].Ecological Indicators,2021,124:107404.
[37] IRANMANESH M,SADEGHI H.Effects of soil texture and nitrogen on ability of carbon sequestration in different organs of two Tamarix species as a good choice for carbon stock in dry lands[J].Ecological Engineering,2019,139:105577.
[38] 杨文彬,王海东,彭祚登,等.施用污泥制有机营养土对沙地国槐榆树林土壤理化性质的影响[J].山东农业大学学报(自然科学版),2021,52(4):559-566.
[39] 刘艳,马风云,宋玉民,等.黄河三角洲冲积平原湿地土壤酶活性与养分相关性研究[J].水土保持研究,2008,15(1):59-61.
[40] 苏丽,葛磊,夏江宝,等.黄河三角洲滨海滩涂不同微地形改造的盐地碱蓬恢复效应评价[J].农业工程学报,2021,37(10):82-90.

备注/Memo

备注/Memo:
收稿日期:2023-11-1
基金项目:国家自然科学基金(40901276,40871239)和聊城大学博士基金(318051529)资助项目.
作者简介:王 浩(1984—),男,山东聊城人,讲师,博士,主要从事环境生态教学和研究工作.E-mail:wanghao@lcu.edu.cn
通信作者:陈永金(1968—),男,山东兰陵人,副教授,博士,主要从事自然地理学、生态恢复等领域的研究.E-mail:chengyongjin@lcu.edu.cn
更新日期/Last Update: 2023-11-25