参考文献/References:
[1] CORTES C,VAPNIK V.Support-vector networks[J].Machine Learning,1995,20(3):273-297.
[2] ZHANG Wei CHEN Junjie.Relief selection and parameter optimization for support vector machine based on mixed kernel function[J].International Journal of Performability Engineering,2018,14(2):280-289.
[3] DING Hu,XU Jinhui.Random gradient descent tree:a combinatorial approach for SVM with outliers[EB/OL].[2022-06-17].https://www.xueshufan.com/publication/2593094871.
[4] 马婷婷,杨志霞,叶俊佑.鲁棒双参数化间隔支持向量机[J].计算机工程与应用,2022,58(9):74-82.
[5] 李建民,陈慧,杨冬芹,等.改进GWO优化SVM的服务器性能预测[J].计算机工程与设计,2019,40(11):3099-3105,3163.
[6] 程凤伟,王文剑.基于近邻传输的粒度SVM算法[J].计算机科学与探索,2020,14(7):1194-1199.
[7] TAX D M J,DUIN R P W.Support vector data description[J].Machine Learning,2004,54(1):45-66.
[8] NGUYEN P,TRAN D.Repulsive-SVDD classification[C]// Proceedings of the 19th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining,May 19-22,2015,Ho Chi Minh City, Vietnam, Switzerland: Springer Cham,2015:277-288.
[9] KIM S,CHOI Y,LEE M.Deep learning with support vector data description[J].Neurocomputing,2015,165:111-117.
[10] 杨晨,王婕婷,李飞江,等.基于概率的支持向量数据描述方法[J].计算机应用,2019,39(11):3134-3139.
[11] HAO Peiyi.A new fuzzy maximal-margin spherical-structured multi-class support vector machine[EB/OL].[2022-06-17].https://ieeexplore.ieee.org/document/6890475?denied=.
[12] 陈鹏,刘爽,左莉,等.基于数据分布规律的分段组合支持向量机研究[J].微电子学与计算机,2015,32(3):94-99.
[13] 宋瑞阳,孟华,龙治国.基于数据分布特征的线性孪生支持向量机[J].计算机科学,2019,46(S1):407-411.
[14] KHANJANI-SHIRAZ R,BABAPOUR-AZAR A,HOSSEINI-NODEH Z,et al.Distributionally robust joint chance-constrained support vector machines[J].Optimization Letters,2023,17(2):299-332.
[15] BAHRAINI T,GHAZI S,YAZDI H S.Toward optimum fuzzy support vector machines using error distribution[J].Engineering Applications of Artificial Intelligence,2020,90:103545.
[16] 顾晓清,倪彤光,姜志彬,等.面向大规模噪声数据的软性核凸包支持向量机[J].电子学报,2018,46(2):347-357.
[17] 周裕群,张德生,张晓.一种改进的鲁棒模糊孪生支持向量机算法[J].计算机工程与应用,2023,59(1):140-148.
[18] 戴小路,汪廷华,周慧颖.基于加权马氏距离的模糊多核支持向量机[J].计算机科学,2022,49(S2):302-306.
[19] 刘忠宝,裴松年,杨秋翔.具有 N-S 磁极效应的最大间隔模糊分类器[J].电子科技大学学报,2016,45(2):227-232,239.