[1]翟步祥,聂 涛*,薛 翔.5次非线性Schrdinger方程的一个线性化4层紧致差分格式[J].江西师范大学学报(自然科学版),2019,(01):35-38+51.[doi:10.16357/j.cnki.issn1000-5862.2019.01.07]
 ZHAI Buxiang,NIE Tao*,XUE Xiang.The Linearized Four-Level Compact Finite Difference Schemefor the Quintic Nonlinear Schrdinger Equation[J].Journal of Jiangxi Normal University:Natural Science Edition,2019,(01):35-38+51.[doi:10.16357/j.cnki.issn1000-5862.2019.01.07]
点击复制

5次非线性Schrödinger方程的一个线性化4层紧致差分格式()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年01期
页码:
35-38+51
栏目:
数学与应用数学
出版日期:
2019-02-10

文章信息/Info

Title:
The Linearized Four-Level Compact Finite Difference Scheme for the Quintic Nonlinear Schrödinger Equation
文章编号:
1000-5862(2019)01-0035-04
作者:
翟步祥1聂 涛1*薛 翔2
1.南京科技职业学院基础科学部,江苏 南京 210048; 2.南京信息工程大学数学与统计学院,江苏 南京 210044
Author(s):
ZHAI Buxiang1NIE Tao1*XUE Xiang2
1.Basic Department,Nanjing Polytechnic Institute,Nanjing Jiangsu 210048,China; 2.School of Mathematics and Statistics,Nanjing University of Information Science and Technology,Nanjing Jiangsu 210044,China
关键词:
5次非线性Schrödinger方程 紧致有限差分格式 最优误差估计 线性化4层格式 计算效率
Keywords:
quintic nonlinear Schrödinger equation compact finite difference scheme optimal error estimate linearized four-level scheme computational efficiency
分类号:
O 241.8
DOI:
10.16357/j.cnki.issn1000-5862.2019.01.07
文献标志码:
A
摘要:
对5次非线性Schrödinger方程提出了一个线性化4层紧致有限差分格式,引入“抬升”技巧,运用标准的能量方法和数学归纳法建立了误差的最优估计,证明数值解在空间和时间2个方向分别具有4阶和2阶精度.数值实验对理论结果进行了验证,并通过对比表明该文格式在保持精度相当的前提下较已有格式具有更高的计算效率.
Abstract:
In this paper,a linearized four-level compact finite difference scheme for the nonlinear Schrödinger equation involving quintic term is proposed.By introducing a "lifting" technique,the optimal error estimate is established by using standard energy method and mathematical induction.It is proved that the numerical solution has fourth-order and second-order accuracy in space and in time,respectively.Numerical experiments are given to verify the theoretical results and compared with the existing results.The results show that the proposed scheme has higher computational efficiency under the condition of maintaining the accuracy.

参考文献/References:

[1] 张鲁明,常谦顺.带5次项的非线性Schrödinger方程的守恒数值格式[J].应用数学,1999,12(1):65-71.
[2] 张鲁明,常谦顺.带5次项的非线性Schrödinger方程差分解法[J].应用数学学报,2000,23(3):351-358.
[3] Bao Weizhu,Jaksch D,Markowich P A.Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation[J].J Comput Phys,2003,187(1):318-342.
[4] Bao Weizhu,Li Hailiang,Shen Jie.A generalized-Laguerre-Fourier-Hermite pseudospectral method for computing the dynamics of rotating Bose-Einstein condensates[J].SIAM Journal on Scientific Computing,2009,31(5):3685-3711.
[5] Bao Weizhu,Shen Jie.A fourth-order time-splitting Laguerre-Hermite pseudo-spectral method for Bose-Einstein condensates[J].SIAM Journal on Scientific Computing,2005,26(6):2010-2028.
[6] Argyris J,Haase M.An engineer's guide to soliton phenomena:application of the finite element method[J].Computer Methods in Applied Mechanics and Engineering,1987,61(1):71-122.
[7] Akrivis G D,Dougalis V A,Karakashian O A.On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation[J].Numerische Mathematik,1991,59(1):31-53.
[8] Karakashian O,Makridakis C.A space-time finite element method for the nonlinear Schrödinger equation:the discontinuous Galerkin method[J].Mathematics of Computation,1998,67(222):479-499.
[9] Xu Yan,Shu Chiwang.Local discontinuous Galerkin methods for nonlinear Schrödinger equations[J].Journal of Computational Physics,2005,205(1):72-97.
[10] Dehghan M,Mirzaei D.Numerical solution to the unsteady two-dimensional Schrödinger equation using meshless local boundary integral equation method[J].International Journal for Numerical Methods in Engineering,2008,76(4):501-520.
[11] Dehghan M,Mirzaei D.The meshless local Petrov-Galerkin(MLPG)method for the generalized two-dimensional non-linear Schrödinger equation[J].Engineering Analysis with Boundary Elements,2008,32(9):747-756.
[12] Taha T R,Ablowitz M J.Analytical and numerical aspects of certain nonlinear evolution equations: numerical nonlinear Schrödinger equation[J].Journal of Computational Physics,1984,55(2):203-2230.
[13] Cloot A,Herbst B M,Weideman J A C.A numerical study of the nonlinear Schrödinger equation involving quintic terms[J].Journal of Computational Physics,1990,86(1):127-146.
[14] Dehghan M,Taleei A.A compact split-step finite difference method for solving the nonlinear Schrödinger equations with constant and variable coefficients[J].Computer Physics Communications,2010,181(1):43-51.
[15] 王廷春,郭柏灵.一维非线性Schrödinger方程的两个无条件收敛的守恒紧致差分格式[J].中国科学:数学,2011,41(3):207-233.
[16] Sanz-Sema J M.Methods for the numerical solution of the nonlinear Schrödinger equation[J].Math Comp,1984,43(167):21-27.
[17] Chang Qianshun,Jia Erhui,Sun Weiwei.Difference schemes for solving the generalized nonlinear Schrödinger equation[J].J Comput Phys,1999,148(2):397-415.
[18] Delfour M,Fortin M,Payre G.Finite-difference solution of a non-llinear Schrödinger equation[J].J Comput Phys,1981,44(2):277-288.
[19] 王询,曹圣山.带5次项的非线性Schrödinger方程新差分格式[J].中国海洋大学学报:自然科学版,2009,39(增刊):487-491.
[20] 初日辉.带5次项的非线性Schrödinger方程的一个紧致差分格式[J].江苏师范大学学报:自然科学版,2014,32(2):53-57.
[21] Samarskii A A,Andreev V B.Difference methods for elliptic equations[M].Moscow:Nauka Izdat,1976.
[22] Wang Tingchun,Zhao Xiaofei.Optimal l∞ error estimates of finite difference methods for the coupled Gross-Pitaevskii equations in high dimensions[J].Science China Mathematics,2014,57(10):2189-2214.

相似文献/References:

[1]张利娟,孙建强*.分数阶Klein-Gordon-Schrdinger方程的保能量方法[J].江西师范大学学报(自然科学版),2022,(03):257.[doi:10.16357/j.cnki.issn1000-5862.2022.03.07]
 ZHANG Lijuan,SUN Jianqiang.The Energy-Preserving Method for the Fractional Klein-Gordon-Schrdinger Equation[J].Journal of Jiangxi Normal University:Natural Science Edition,2022,(01):257.[doi:10.16357/j.cnki.issn1000-5862.2022.03.07]

备注/Memo

备注/Memo:
收稿日期:2018-05-20
基金项目:国家自然科学基金(11571181)和江苏省自然科学基金(BK20171454)资助项目.
通信作者:聂 涛(1979-),女,山东青岛人,副教授,主要从事偏微分方程数值解的研究.E-mail:nietaonjcc@126.com
更新日期/Last Update: 2019-02-10