[1]刘 瑶,江 辉.鄱阳湖浑浊水体后向散射系数模拟及校正研究[J].江西师范大学学报(自然科学版),2019,(01):102-107.[doi:10.16357/j.cnki.issn1000-5862.2019.01.17]
 LIU Yao,JIANG Hui.The Simulation and Calibration of Backscattering Coefficient of the Turbid Waters in Poyang Lake[J].Journal of Jiangxi Normal University:Natural Science Edition,2019,(01):102-107.[doi:10.16357/j.cnki.issn1000-5862.2019.01.17]
点击复制

鄱阳湖浑浊水体后向散射系数模拟及校正研究()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年01期
页码:
102-107
栏目:
化学与生命科学
出版日期:
2019-02-10

文章信息/Info

Title:
The Simulation and Calibration of Backscattering Coefficient of the Turbid Waters in Poyang Lake
文章编号:
1000-5862(2019)01-0102-06
作者:
刘 瑶12江 辉2
1.南昌大学资源环境与化工学院,鄱阳湖环境与资源利用教育部重点实验室,江西 南昌 330031; 2.南昌工程学院,鄱阳湖流域水工程安全与资源高效利用国家地方联合工程实验室,江西 南昌 330099
Author(s):
LIU Yao12JIANG Hui2
1.School of Resources Environmental and Chemical Engineering,Key Laboratory of Poyang Lake Environment and Resource Utilization,Ministry of Education,Nanchang University,Nanchang Jiangxi 330031,China; 2.National and Local Joint Engineering Laboratory of Hydraulic Engineering Safety and Efficient Utilization of Water Resources in Poyang Lake Basin,Nanchang Institute of Technology,Nanchang Jiangxi 330099,China
关键词:
后向散射系数 半分析模型 后向散射概率 总悬浮颗粒物 鄱阳湖
Keywords:
backscattering coefficient semi-analytical approach backscattering probability total suspended particulate matter Poyang Lake
分类号:
O 432
DOI:
10.16357/j.cnki.issn1000-5862.2019.01.17
文献标志码:
A
摘要:
湖泊水体后向散射系数是水色遥感反演模型的重要参数,浑浊2类水体的后向散射特性影响因素较多,相对其他固有光学参数其测量难度大.以鄱阳湖为例,对湖区水体进行野外光学测量,采用半分析模型方法模拟后向散射系数,从而得到本地化的后向散射概率,实现水体后向散射系数的精确校正.研究结果表明:鄱阳湖水体后向散射概率随着波长的变化而改变,呈显著的2次函数关系; 鄱阳湖总悬浮颗粒物浓度<50 mg·L-1的中低浑浊水体420、442、470、510、590和700 nm的后向散射概率分别为0.00
Abstract:
Backscattering coefficient is an important parameter of water color remotely-sensed retrieval model in lake,there are many factors influencing the backscattering characteristics of case Ⅱ turbid water,and backscattering coefficient is more difficult measuring than other inherent optical parameters.The optics parameters are measured from Poyang Lake,and the backscattering coefficient is estimated by the semi-analysis model,thus the reasonable backscattering probability is obtained,and the accurate correction of the backscattering coefficient is realized.The results show that the backscattering probability of Poyang Lake changes with the increase of wavelength,and shows a quadratic function of wavelength.The backscattering probabilities of 420,442,470,510,590 and 700 nm respectively are 0.007 0,0.012 6,0.013 9,0.016 9,0.023 8,0.026 9 with low and medium turbid waters in Poyang Lake,and the mean value is 0.016 9,and the standard deviation is 0.008.While total suspended particulate matter concentration in high turbidity waters is greater than 50 mg·L-1,the backscattering probability of green light to red light band is more stable,which is similar with values from low and medium turbid waters,and the range of purple light to blue light is unstable,so this range is key for the backscatter probability adjustment of turbidity and clear water bodies,the backscattering probabilities of 420 and 442 nm are respectively adjusted to 0.006 1 and 0.010 2 with high turbid waters in Poyang Lake.The research results can provide the support of research ideas,methods and data for accurately calibrating the backscattering coefficient of turbid water bodies in lakes.

参考文献/References:

[1] 宋庆君,唐军武,马荣华.水体后向散射系数校正方法研究[J].海洋技术,2008,27(1):48-52.
[2] 顾艳镇,刘玉光,修鹏,等.6通道后向散射仪[J].气象水文海洋仪器,2008(2):1-4.
[3] Doxaran D,Leymarie E,Nechad B,et al.Improved correction methods for field measurements of particulate light backscattering in turbid waters[J].Optics Express,2016,24(4):3615-3637.
[4] 申茜.基于Hydrolight模拟的内陆水体光场的二向性[J].北京工业大学学报,2017,43(5):649-658.
[5] Whitlock C H,Poole L R,Usry J W,et al.Comparison of reflectance with backscatter and absorption parameters for turbid waters[J].Applied Optics,1981,20(3):517-522.
[6] Kirk J T O.Light & photosynthesis in aquatic ecosystems[M].Cambridge:Cambridge University Press,1994.
[7] Aas E,Høkedal J,Sørensen K.Spectral backscattering coefficient in coastal waters[J].International Journal of Remote Sensing,2005,26(2):331-343.
[8] 刘炜,李铜基,朱建华,等.黄东海海区总悬浮物散射特性研究[J].海洋技术,2007,26(2):42-46.
[9] 姜玲玲,赵冬至,王林,等.水体后向散射特性研究进展[J].遥感技术与应用,2013,28(1):150-156.
[10] 马荣华,宋庆君,李国砚,等.太湖水体的后向散射概率[J].湖泊科学,2008,20(3):375-379.
[11] 刘忠华,李云梅,吕恒,等.基于生物光学模型的巢湖后向散射概率估算[J].环境科学,2011,32(2):464-471.
[12] Wu Guofeng,Cui Lijuan,Duan Hongtao,et al.Specific absorption and backscattering coefficients of the main water constituents in Poyang Lake,China[J].Environmental Monitoring and Assessment,2013,185(5):4191-4206.
[13] 彭俊.1950年以来鄱阳湖流域水沙变化规律及影响因素分析[J].长江流域资源与环境,2015,24(10):1751-1761.
[14] 江辉,谢盛鑫,刘瑶,等.鄱阳湖丰水期水体悬浮颗粒物粒径空间分布特征[J].南昌工程学院学报,2018,37(6):43-47.
[15] 洪祎君,蒋梅鑫,贾玉连,等.鄱阳湖沙山高分辨率沙质地层及其冬季风气候信息记录的初步探究[J].江西师范大学学报:自然科学版,2017,41(3):319-325.
[16] 唐军武,田国良,汪小勇,等.水体光谱测量与分析Ⅰ:水面以上测量法[J].遥感学报,2004,8(1):37-44.
[17] 李俊生,张兵,张霞,等.一种计算水体中悬浮物后向散射系数的方法[J].遥感学报,2008,12(2):193-198.
[18] Lee Z,Carder K L,Arnone R A.Deriving inherent optical properties from water color:a multiband quasi-analytical algorithm for optically deep waters[J].Applied Optics,2002,41(27):5755-5772.
[19] 张红,李云梅,黄家柱,等.内陆水体后向散射系数模拟研究[J].环境科学,2011,32(9):2522-2530.
[20] 孙德勇,李云梅,王桥,等.巢湖水体散射和后向散射特性研究[J].环境科学,2010,31(6):1428-1434.
[21] Jiang Hui,Liu Yao.Analysis and inversion of the nutritional status of China's Poyang Lake using Modis data[J].Journal of the Indian Society of Remote Sensing,2016,44(5):837-842.
[22] 刘佳,龚芳,何贤强,等.光源偏振对水体颗粒后向散射系数测量的影响[J].光谱学与光谱分析,2016,36(1):31-37.
[23] 张琍,陈晓玲,黄珏,等.鄱阳湖丰、枯水期悬浮体浓度及其粒径分布特征[J].华中师范大学学报:自然科学版,2014,48(5):743-750.
[24] Slade W H,Boss E.Spectral attenuation and backscattering as indicators of average particle size[J].Applied Optics,2015,54(24):7264-7277.

备注/Memo

备注/Memo:
收稿日期:2018-07-17
基金项目:国家自然科学基金(41461080,51869012),江西省青年科学基金(20171ACB21051),江西省教育厅科技课题(GJJ170979)和江西省水利科技课题(KT201646)资助项目.
作者简介:刘 瑶(1980-),女,江西九江人,副教授,博士研究生,主要从事水环境遥感监测研究.E-mail:liuyaojj@163.com
更新日期/Last Update: 2019-02-10