参考文献/References:
[1] 胡義,王开发,王稳地.2019新型冠状病毒肺炎疫情传播能力及疫情控制效能的地域差异分析[J].应用数学学报,2020,43(2):227-237.
[2] 黄森忠,彭志行,靳祯.新型冠状病毒肺炎疫情控制策略研究:效率评估及建议[J].中国科学:数学,2020,50(6):885-898.
[3] 翟羿江,蔺小林,李建全,等.基于存在基础病史易感者的SEIR模型对COVID-19传播的研究[J].应用数学和力学,2021,42(4):413-421.
[4] Tang Biao,Wang Xia,Li Qian,et al.Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions[J].Journal of Clinical Medicine,2020,9(2):462.
[5] 白宁,宋晨玮,徐瑞,等.基于动力学模型的COVID-19疫情预测与控制策略研究[J].应用数学学报,2020,43(3):483-493.
[6] 崔景安,吕金隆,郭松柏,等.新发传染病动力学模型:应用于2019新冠肺炎传播分析[J].应用数学学报,2020,43(2):147-155.
[7] 朱宏淼,齐佳音,靳祯,等.重大公共卫生事件中公众防控意识传播模型研究[J].系统工程理论与实践,2021,41(11):2865-2875.
[8] 邹兰,阮士贵.新型冠状病毒肺炎的斑块模型:围堵策略对重庆疫情控制的效果讨论[J].应用数学学报,2020,43(2):310-323.
[9] 王霞,唐三一,陈勇,等.新型冠状病毒肺炎疫情下武汉及周边地区何时复工?数据驱动的网络模型分析[J].中国科学:数学,2020,50(7):969-978.
[10] Sun Xiaodan,Xiao Yanni,Ji Xiangting.When to lift the lockdown in Hubei province during COVID-19 epidemic?An insight from a patch model and multiple source data[J].Journal of Theoretical Biology,2020,507:110469.
[11] 朱翌民,黄勃,王忠震,等.隔离措施对COVID-19疫情控制的模型分析[J].武汉大学学报:理学版,2020,66(5):442-450.
[12] 李倩,肖燕妮,吴建宏,等.COVID-19疫情时滞模型构建与确诊病例驱动的追踪隔离措施分析[J].应用数学学报,2020,43(2):238-250.
[13] 王雪萍,王晓静,白玉珍,等.一类潜伏期和隐性感染者均具有传染性的COVID-19传染病模型[J].应用数学进展,2020,9(5):700-707.
[14] 张菊平,李云,姚美萍,等.武汉市COVID-19疫情与易感人群软隔离强度关系分析[J].应用数学学报,2020,43(2):162-173.
[15] Martcheva M,Antman S,Holmes P.An introduction to mathematical epidemiology[M].3rd ed.New York:Springer,2015.
[16] Sun Chengjun,Yang Wei,Arino J,et al.Effect of media-induced social distancing on disease transmission in two patches setting[J].Mathematical Biosciences,2011,230(2):87-95.
[17] Thieme H R.Persistence under relaxed point-dissipativity:with application to an endemic model[J].SIAM Journal on Applied Mathematics,1993,24(2):407-435.