[1]杨晚铃,白芷懿,邹明珠,等.鹿茸草全长转录组测序与次生代谢产物生物合成相关基因的挖掘[J].江西师范大学学报(自然科学版),2023,(01):99-110.
 YANG Wanling,BAI Zhiyi,ZOU Mingzhu,et al.The Full-Length Transcriptome Sequencing and Identification of Related Genes Involved in Secondary Metabolism Biosynthesis for Monochasma savatieri[J].Journal of Jiangxi Normal University:Natural Science Edition,2023,(01):99-110.
点击复制

鹿茸草全长转录组测序与次生代谢产物生物合成相关基因的挖掘()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年01期
页码:
99-110
栏目:
生命科学
出版日期:
2023-01-25

文章信息/Info

Title:
The Full-Length Transcriptome Sequencing and Identification of Related Genes Involved in Secondary Metabolism Biosynthesis for Monochasma savatieri
作者:
杨晚铃白芷懿邹明珠王欣茹谢建坤张帆涛*
(江西师范大学生命科学学院,江西 南昌 330022)
Author(s):
YANG WanlingBAI ZhiyiZOU MingzhuWANG XinruXIE JiankunZHANG Fantao*
(College of Life Sciences,Jiangxi Normal University,Nanchang Jiangxi 330022,China)
关键词:
鹿茸草 全长转录组 次生代谢 生物合成 遗传资源
Keywords:
Monochasma savatieri Franch.ex Maxim full-length transcriptome secondary metabolism biosynthesis genetic resource
分类号:
S 567
文献标志码:
A
摘要:
为获得鹿茸草的全长转录组信息,挖掘鹿茸草次生代谢化合物生物合成途径相关酶的基因,该文基于单分子测序技术,利用Pacbio高通量测序平台,对鹿茸草进行全长转录组测序,共获得48 005条去冗余的高质量转录本,与NR、Swiss-Prot、GO、KEGG等8个数据库进行BLAST比对,共有45 362个转录本被成功注释,注释率为94.50%.其中有389条转录本被注释到KEGG的10条标准次生代谢生物合成通路中.对转录组数据进一步分析发现:参与鹿茸草苯丙素类生物合成的转录本有194条,参与生物碱类生物合成的转录本有115条,参与类黄酮化合物生物合成的转录本有23条,参与其他次生代谢产物的转录本有57条,参与次生代谢后氧化与糖基化修饰的转录本有204条.鹿茸草全长转录组的获得极大地丰富了鹿茸草的遗传信息,初步揭示了参与鹿茸草次生代谢产物合成相关的基因通路,为深入研究鹿茸草次生代谢产物合成途径关键酶的功能及其调控机制奠定了基础.
Abstract:
To obtain the full-length transcriptome sequence database and mine the genes of enzymes related to the secondary metabolic compounds' biosynthetic pathway in Monochasma savatieri,based on Single Molecule Real Time(SMRT)technology,the full-length transcriptome is sequenced using Pacbio high-throughput sequencing platform.A total of 48 005 high-quality transcripts are obtained.45 362 transcripts are successfully annotated by BLAST search against NR,Swiss-Prot,GO,KEGG and other four public sequence databases,with an annotation rate of 94.50%.Among them,389 transcripts are annotated to the 10 standard secondary metabolic biosynthetic pathways of KEGG.Further analysis reveals that a total of 194 transcripts are involved in phenylpropanoid biosynthesis,115 transcripts are related to alkaloid biosynthesis,23 transcripts might participate in flavonoid biosynthesis,and 57 transcripts are involved in other secondary metabolites.Additionally,204 transcripts relate to secondary metabolic oxidation and glycosylation post-modifications.The obtained data of this study greatly enriches the genetic information of Monochasma savatieri and preliminarily reveals the genes involved in the synthesis of secondary metabolites,which lays a foundation for further studies on function and regulatory mechanisms of key genes involved in thesynthesis of secondary metabolites in Monochasma savatieri.

参考文献/References:

[1] 中国科学院中国植物志编委会.中国植物志:第68卷 [M].北京:科学出版社,1963:389-390.
[2] ZHANG Muhan,CHEN Yulu,OUYANG Yao,et al.The biology and haustorial anatomy of semi-parasitic Monochasma savatieri Franch.ex Maxim [J].Plant Growth Regulation,2015,75(2):473-481.
[3] 国家中医药管理局《中华本草》编委会.中华本草:精选本(上册)[M].上海:上海科技出版社,1998:338.
[4] 杨燕妮,王毅,孙晓波,等.炎宁糖浆抗炎活性及其作用机制研究 [J].中国药理学通报,2018,34(12):1760-1766.
[5] ZHENG Wei,TAN Xingqi,GUO Liangjun,et al.Chemical constituents from Monochasma savatieri [J].Chinese Journal of Natural Medicines,2012,10(2):102-104.
[6] SHI Mengfan,HE Wenjun,LIU Yanli,et al.Protective effect of total phenylethanoid glycosides from Monochasma savatieri Franch on myocardial ischemia injury [J].Phytomedicine,2013,20(14):1251-1255.
[7] 杨蓓芬,崔敏燕.绵毛鹿茸草的次生代谢产物含量与抑菌活性分析 [J].浙江中医药大学学报,2009,33(2):265-267.
[8] 乡世健,潘林燕,王婉菱,等.鹿茸草抗炎、止咳作用的初步研究 [J].时珍国医国药,2012,23(11):2727-2728.
[9] 傅建兴,王利祥,吴军.炎宁颗粒治疗急性上呼吸道感染临床观察 [J].海峡药学,2010,22(10):171-173.
[10] 马静,许琼明,吴文倩,等.炎宁颗粒有效部位化学成分研究 [J].中成药,2012,34(10):1946-1948.
[11] 慧芳,刘秀岩,李宗谕,等.转录组测序技术在药用植物研究中的应用 [J].中草药,2019,50(24):6149-6155.
[12] 罗纯,张青林,罗正荣.第二代测序技术在植物遗传研究中的应用 [J].广东农业科学,2015,42(3):186-192.
[13] 刘振,徐建红.高通量测序技术在转座子研究中的应用 [J].遗传,2015,37(9):885-898.
[14] 张子敬,刘燕蓉,张顺进,等.第三代测序技术的方法原理及其在生物领域的应用 [J].中国畜牧杂志,2020,56(6):11-15.
[15] 马丽娜,杨进波,丁逸菲,等.三代测序技术及其应用研究进展 [J].中国畜牧兽医,2019,46(8):2246-2256.
[16] 俞晓玲,姜文倩,郑玲,等.单分子测序技术及应用研究进展 [J].生物化学与生物物理进展,2020,47(1):5-16.
[17] 李文燕,崔百元,刘勤坚.薏苡苗期叶片全长转录组测序、注释及SSR预测 [J].分子植物育种,2020,18(15):4855-4870.
[18] CUI Yupeng,GAO Xinqiang,WANG Jianshe,et al.Full-length transcriptome analysis reveals candidate genes involved in terpenoid biosynthesis in Artemisia argyi [J].Frontiers in Genetics,2021,12:659962.
[19] 尹彦棚,丁乔娇,罗加伟,等.基于Pacbio第三代测序技术的厚朴基因组测序分析 [J].广西植物,2021,41(8):1251-1262.
[20] 尚骁尧,周玲芳,尹芊芊,等.蒺藜苜蓿(Medicago truncatula)全长转录组测序及分析 [J].生物技术通报,2021,37(8):131-140.
[21] CHEN Yeyu,YANG Huanchao,CHEN Yanling,et al.Full-length transcriptome sequencing and identification of immune-related genes in the critically endangered Hucho bleekeri [J].Developmental & Comparative Immunology,2021,116:103934.
[22] GAO Xue,GUO Fengxia,CHEN Yuan,et al.Full-length transcriptome analysis provides new insights into the early bolting occurrence in medicinal Angelica sinensis [J].Scientific Reports,2021,11(1):13000.
[23] CARTOLANO M,HUETTEL B,HARTWIG B,et al.cDNA library enrichment of full length transcripts for SMRT long read sequencing [J].PLoS One,2016,11(6):e0157779.
[24] LI Weizhong,GODZIK A.Cd-hit:a fast program for clustering and comparing large sets of protein or nucleotide sequences [J].Bioinformatics,2006,22(13):1658-1659.
[25] ALTSCHUL S F,MADDEN T L,SCHÄFFER A A,et al.Gapped BLAST and PSI-BLAST:a new generation of protein database search programs [J]. Nucleic Acids Research,1997,25(17):3389-3402.
[26] 邓泱泱,荔建琦,吴松锋,等.nr数据库分析及其本地化 [J].计算机工程,2006,32(5):71-73,76.
[27] BOUTET E,LIEBERHERR D,TOGNOLLI M,et al.UniProtKB/Swiss-Prot [M]∥EDWARDS D.Plant bioinformatics:methods and protocols.Totowa:Humana Press,2007:89-112.
[28] ASHBURNER M,BALL C A,BLAKE J A,et al.Gene Ontology:tool for the unification of biology [J].Nature Genetics,2000,25(1):25-29.
[29] TATUSOV R L,GALPERIN M Y,NATALE D A,et al.The COG database:a tool for genome-scale analysis of protein functions and evolution [J].Nucleic Acids Research,2000,28(1):33-36.
[30] KOONIN E V,FEDOROVA N D,JACKSON J D,et al.A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes [J].Genome Biology,2004,5(2):R7.
[31] JENSEN L J,JULIEN P,KUHN M,et al.eggNOG:automated construction and annotation of orthologous groups of genes [J].Nucleic Acids Research,2008,36(S1):D250-D254.
[32] FINN R D,BATEMAN A,CLEMENTS J,et al.Pfam:the protein families database [J].Nucleic Acids Research,2014,42:D222-D230.
[33] KANEHISA M,GOTO S,KAWASGHIMA S,et al.The KEGG resource for deciphering the genome [J].Nucleic Acids Research,2004,32:D277-D280.
[34] JO Yeonhwa,CHU Hyosub,CHO Jinkyong,et al.De novo transcriptome assembly of two different peach cultivars grown in Korea [J].Genomics Data,2015,6:260-261.
[35] ZHENG Yi,JIAO Chen,SUN Honghe,et al.iTAK:a program for genome-wide prediction and classification of plant transcription factors,transcriptional regulators,and protein kinases [J].Molecular Plant,2016,9(12):1667-1670.
[36] KONG Lei,ZHANG Yong,YE Zhiqiang,et al.CPC:assess the protein-coding potential of transcripts using sequence features and support vector machine [J].Nucleic Acids Research,2007,35:W345-W349.
[37] LUO Haitao,BU Dechao,SUN Liang,et al.De novo approach to classify protein-coding and noncoding transcripts based on sequence composition [M]∥ALVAREZ M L,NOURBAKHSH M.RNA mapping:methods and protocols.Totowa:Humana Press,2014:203-207.
[38] WANG Liguo,PARK H J,DASARI S,et al.CPAT:coding-potential assessment tool using an alignment-free logistic regression model [J].Nucleic Acids Research,2013,41(6):e74.
[39] LI Jianwei,MA Wei,ZENG Pan,et al.LncTar:a tool for predicting the RNA targets of long noncoding RNAs [J].Briefings in Bioinformatics,2015,16(5):806-812.
[40] 曾兰亭,杨子银.茶树苯丙素类/苯环型挥发性物质的生物合成和胁迫响应的研究进展 [J].热带亚热带植物学报,2019,27(5):591-600.
[41] 梁晓莲,刘纤纤,李文莉,等.生物碱类化合物抗病毒研究进展 [J].辽宁中医药大学学报,2021,23(4):51-57.
[42] FERREYRA M L F,RIUS S P,CASATI P.Flavonoids:biosynthesis,biological functions,and biotechnological applications [J].Frontiers in Plant Science,2012,3:222.
[43] 汪思远,蒋世翠,王康宇,等.植物细胞色素P450的研究进展 [J].吉林蔬菜,2014(4):41-45.
[44] 郭溆,罗红梅,宋经元,等.糖基转移酶在植物次生代谢途径中的研究进展 [J].世界科学技术(中医药现代化),2012,14(6):2126-2130.
[45] 朱莹莹,李敏,陈重,等.炎宁颗粒的化学成分研究 [J].中成药,2013,35(5):988-994.
[46] XIAO Mei,ZHANG Ye,CHEN Xue,et al.Transcriptome analysis based on next-generation sequencing of non-model plants producing specialized metabolites of biotechnological interest [J].Journal of Biotechnology,2013,166(3):122-134.
[47] 王博.玄参属植物的化学成分和药理活性研究进展 [J].化工设计通讯,2018,44(6):211.
[48] 徐世林.苯丙素苷化合物的合成研究进展 [J].杨凌职业技术学院学报,2008,7(3):31-32.
[49] VOGT T.Phenylpropanoid biosynthesis [J].Molecular Plant,2010,3(1):2-20.
[50] 程水源,陈昆松,刘卫红,等.植物苯丙氨酸解氨酶基因的表达调控与研究展望 [J].果树学报,2003(5):351-357.
[51] 程俊,程曦,盛玲玲,等.砀山酥梨肉桂酸4-羟化酶基因的克隆及表达分析 [J].农业生物技术学报,2016,24(11):1698-1708.
[52] 张华玲,刘绪,杨春贤,等.甘薯肉桂酸-4-羟化酶基因克隆及序列分析 [J].广西植物,2018,38(4):501-508.
[53] LAVHALE S G,KALUNKE R M,GIRI A P.Structural,functional and evolutionary diversity of 4-coumarate-CoA ligase in plants [J].Planta,2018,248(5):1063-1078.
[54] 张攀,张宜凡,陈群力,等.生物碱类天然产物抗乳腺肿瘤机制研究进展 [J].中国中药杂志,2021,46(2):312-319.
[55] 王玲燕,夏桂阳,夏欢,等.天然生物碱类镇痛成分的研究进展 [J].中国中药杂志,2020,45(24):5829-5839.
[56] MOHAMADI N,SHARIFIFAR F,POURNAMDARI M,et al.A review on biosynthesis,analytical techniques,and pharmacological activities of trigonelline as a plant alkaloid [J].Journal of Dietary Supplements,2018,15(2):207-222.
[57] 刘金凤,黄鹏,卿志星,等.苄基异喹啉类生物碱生物合成与代谢工程研究进展 [J].基因组学与应用生物学,2016,35(8):2194-2200.
[58] WINKEL-SHIRLEY B.Flavonoid biosynthesis:a colorful model for genetics,biochemistry,cell biology,and biotechnology [J].Plant Physiology,2001,126(2):485-493.
[59] PETRUSSA E,BRAIDOT E,ZANCANI M,et al.Plant flavonoids:biosynthesis,transport and involvement in stress responses [J].International Journal of Molecular Sciences,2013,14(7):14950-14973.
[60] 王玲玲,边祥雨,高蔚娜,等.植物类黄酮提取纯化技术研究进展 [J].营养学报,2019,41(6):606-610.
[61] 赵乐,朱畇昊,张莉,等.基于转录组测序挖掘商陆皂苷甲生物合成相关基因 [J].药学学报,2017,52(9):1471-1480.
[62] 李军玲,罗晓东,赵沛基,等.植物萜类生物合成中的后修饰酶 [J].云南植物研究,2009,31(5):461-468.
[63] SCHULER M A,WERCK-REICHHART D.Functional genomics of P450s [J].Annual Review of Plant Biology,2003,54:629-667.
[64] GACHON C M,LANGLOIS-MEURINNE M,SAINDRENAN P.Plant secondary metabolism glycosyltransferases:the emerging functional analysis [J].Trends in Plant Science,2005,10(11):542-549.
[65] 陈欣,付锐锐,张鸿,等.药用植物中UGT家族研究进展 [J].生物资源,2018,40(5):443-449.

备注/Memo

备注/Memo:
收稿日期:2022-03-16
基金项目:国家自然科学基金(31960370)和江西省自然科学基金(20202ACB205002)资助项目.
通信作者:张帆涛(1984—),男,江西临川人,副教授,博士,主要从事植物生物技术与分子生物学研究.E-mail:zhang84004@163.com
更新日期/Last Update: 2023-01-25