[1]张千宏,杨利辉.一类模糊微分方程初值问题解的存在性[J].江西师范大学学报(自然科学版),2012,(01):63-66.
 ZHANG Qian-hong,YANG Li-hui.The Existence of Solution to Fuzzy Differential Equation with Initial Valued Problem[J].,2012,(01):63-66.
点击复制

一类模糊微分方程初值问题解的存在性()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2012年01期
页码:
63-66
栏目:
出版日期:
2012-01-01

文章信息/Info

Title:
The Existence of Solution to Fuzzy Differential Equation with Initial Valued Problem
作者:
张千宏;杨利辉
1. 贵州财经学院数学与统计学院, 经济系统仿真重点实验室, 贵州 贵阳 550004; 2. 湖南城市学院数学系, 湖南 益阳 413000
Author(s):
ZHANG Qian-hong YANG Li-hui
关键词:
模糊微分方程 初值问题 拓扑度
Keywords:
fuzzy differential equation initial value problem topological degree
分类号:
O 152.1, O 157.2
文献标志码:
A
摘要:
利用拓扑度理论对一类一阶模糊微分方程 解的存在性问题进行了研究, 证明了在F(t,u)满足一定的条件下该方程至少有一个解.
Abstract:
The existence of solution to fuzzy differential equation is investigated by using theory of topological degree. It is shown that there is at least a solution to this equation under F(t,u) satisfying some conditions.

参考文献/References:

[1] Kandel A, Byatt W J. Fuzzy differential equation [C]//IEE Systems, Man and Cybernetics Society. Proceedings of the International Conference on Cybernetics and Society. Tokyo: Institute of Electrical and Electronics Engineers, 1978: 1213-1216.
[2] Kaleva O. Fuzzy differential equations [J]. Fuzzy Sets Syst, 1987, 24(3): 301-317.
[3] Kaleva O. The Cauchy problem for fuzzy differential equations [J]. Fuzzy Sets Syst, 1990, 35(3): 389-396.
[4] Ouyang He, Wu Yi. On fuzzy differential equations [J]. Fuzzy Sets Syst, 1989, 32(3): 321-325.
[5] Seikkala S. On fuzzy initial value problem [J]. Fuzzy Sets Syst, 1987, 24(3): 319-330.
[6] Barnabás Bede, Gal Sorin G. Solutions of fuzzy differential equations based on generalized differentiability [J]. Commun Math Anal, 2010, 9(2): 22-41.
[7] Allahviranloo T, Kiania N A, Motamedi N. Solving fuzzy differential equations by differential transformation method [J]. Infor- mation Sciences, 2009, 179(7): 956-966.
[8] Diamond P. Stability and periodicity in fuzzy differential equations [J]. IEEE Trans Fuzzy Syst, 2000, 8(5): 583-590.
[9] Diamond P, Watson P. Regularity of solution sets for differential inclusions quasiconcave in a parameter [J]. Appl Math Lett, 2000, 13(1): 31-35.
[10] Tolstonogov A A . Differential inclusions in a Banach space [M]. Dordrecht: Kluwer Academic Publishers, 2000.
[11] Diamond P. Time-dependent differential inclusions, cocycle attractors and fuzzy differential equations [J]. IEEE Trans Fuzzy Syst, 1999, 7(6): 734-740.
[12] 张东凯, 田贵辰, 巩增泰, 等. 二阶模糊微分方程的数值解 [J]. 河北科技大学学报: 自然科学版, 2010, 31(2): 158-161.
[13] Romá n-Flores H, Rojas-Medar M. Embedding of level-con?tinuous fuzzy sets on Banach spaces [J]. Information Sciences , 2002, 144(1/2/3/4): 227-247.
[14] Puri M L, Ralescu D A. Differentials of fuzzy function [J]. J Math Anal Appl, 1983, 9 (1) : 552-558.
[15] Puri M L, Ralescu D A. Fuzzy random variables [J]. J Math Anal Appl, 1986, 11 (4) : 409-422.
[16] Ding Zuohua, Ma Ming, Kandel A . Existence of the solutions of fuzzy differential equation with parameters [J]. Information Sciences , 1999, 99(3/4): 205-217.

更新日期/Last Update: 1900-01-01