[1]袁彩雷,张求龙,江子雄.利用脉冲激光沉积技术制备镍纳米颗粒及其生长过程中的应变场模拟[J].江西师范大学学报(自然科学版),2012,(02):111-115.
 YUAN Cai-lei,ZHANG Qiu-long,JIANG Zi-xiong.Formation and Strain Distribution of Ni Nanoparticles Fabricated by Pulsed Laser Deposition[J].Journal of Jiangxi Normal University:Natural Science Edition,2012,(02):111-115.
点击复制

利用脉冲激光沉积技术制备镍纳米颗粒及其生长过程中的应变场模拟()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2012年02期
页码:
111-115
栏目:
出版日期:
2012-03-01

文章信息/Info

Title:
Formation and Strain Distribution of Ni Nanoparticles Fabricated by Pulsed Laser Deposition
作者:
袁彩雷;张求龙;江子雄
江西师范大学物理与通信电子学院,江西南昌,330022
Author(s):
YUAN Cai-lei;ZHANG Qiu-long;JIANG Zi-xiong
关键词:
Ni纳米颗粒应变场脉冲激光沉积
Keywords:
Ni nanoparticles strain pulsed laser depositon
分类号:
O484.1
文献标志码:
A
摘要:
利用脉冲激光沉积技术和快速退火成功地制备了镶嵌在非晶Al2O3薄膜中的Ni纳米颗粒,用高分辨率透射电子显微镜观察到镶嵌在非晶Al2O3薄膜中的Ni纳米颗粒,用有限元算法系统地模拟了Ni纳米颗粒生长过程中的应变场分布.研究发现:在Ni纳米颗粒的生长过程中,纳米颗粒受到母体A12O3材料的非均匀的偏应变的作用,而且随着Ni纳米颗粒的长大,纳米颗粒受到母体Al2O3材料的非均匀偏应变也逐渐增加.这种非均匀偏应变对于纳米颗粒的晶格结构和形貌有较大的影响,可以通过调节Ni纳米颗粒生长过程中的应变场来实现对Ni纳米颗粒界面态的调控,从而进一步优化Ni纳米颗粒的物理性能.
Abstract:
Ni nanoparticles embedded in the amorphous Al2O3 matrix were fabricated by using pulsed laser deposition and rapid thermal annealing. The results from high-resolution transmission electron microscope also revealed that the complete isolation of Ni nanoparticles embedded in amorphous Al2O3 matrix. The growth strain of Ni nanoparticle embedded in the Al2O3 matrix was investigated. Finite element calculations clearly indicate that the Ni nanoparticle incurs a net deviatoric strain. With the growth of Ni nanoparticle, the larger Ni nanoparticles incur stronger net deviatoric strain, which will have much influence on the structure and morphology of Ni nanoparticles. Strain engineering is an effective tool for tailoring the properties of Ni nanoparticles.

参考文献/References:

[1] Fujii M, Inoue Y, Hayashi S, et al. Hopping conduction in SiO2 films containing C, Si, and Ge clusters [J]. Appl Phys Lett, 1996, 68: 3749-3751.
[2] Franzo G, Irrera A, Moreira E C, et al. Electroluminescence of silicon nanocrystals in MOS structures [J]. Appl Phys A Mater Sci Process, 2002, 74: 1-5.
[3] Yuan Cailei, Cai H, Lee P S, et al. Tuning photoluminescence of Ge/GeO2 core/shell nanoparticles by strain [J]. J Phys Chem C, 2009, 113: 19863-19866.
[4] Van T Hoof, Hou M. Structural and thermodynamic properties of Ag-Co nanoclusters [J]. Phys Rev B, 2005, 72: 115434.
[5] Raksha Sharma, Komilla Suri, Tandon R P, et al. Magnetic relaxation studies in organic-inorganic nanoclusters [J]. J Appl Phys, 2006, 99: 24311.
[6] Chepulskii R V, Butler W H. Temperature and particle-size dependence of the equilibrium order parameter of FePt alloys [J]. Phys Rev B, 2005, 72: 134205.
[7] Volokitin Y, Sinzig J, DeJongh L J, et al. Quantum-size effects in the thermodynamic properties of metallic nanoparticles [J]. Nature, 1996, 384: 621-623.
[8] Pileni M P. Magnetic fluids: Fabrication, magnetic properties, and organization of nanocrystals [J]. Adv Funct Mater, 2001, 11: 323-336.
[9] Diandra L, Leslie-Pelecky, Reuben D. Magnetic properties of nanostructured materials [J]. Chem Mater, 1996, 8: 1770-1783.
[10] Skomski R. Nanomagnetics [J]. J Phys Condens Matter, 2003, 15: R841.
[11] Wellner A, Paillard V, Bonafos C, et al. Stress measurements of germanium nanocrystals embedded in silicon oxide [J]. J Appl Phys, 2003, 94: 5639-5642.
[12] Chew H G, Zheng F, Choi W K, et al. Influence of reductant and germanium concentration on the growth and stress development of germanium nanocrystals in silicon oxide matrix [J]. Nanotechnology, 2007, 18: 65302.
[13] Che S L, Takada K, Takashima K, et al. Preparation of dense spherical Ni particles and hollow NiO particles by spray pyrolysis [J]. J Mater Sci, 1999, 34: 1313-1318.
[14] Thompson G B, Banerjee R, Zhang X D, et al. Chemical ordering and texture in Ni–25 at% Al thin films [J]. Acta Mater, 2002, 50: 643-651.
[15] Wu Szuhan, Chen Donghwang. Synthesis and Stabilization of Ni Nanoparticles in a Pure Aqueous CTAB Solution [J]. Chem Lett, 2004, 33: 406.
[16] Margeat O, Amiens C, Chaudret B, et al. Chemical control of structural and magnetic properties of cobalt nanoparticles [J]. Hem Mater, 2005, 17: 107-111.
[17] Green M, O’Brien P. A novel metalorganic route to nanocrystallites of zinc phosphide [J]. Chem Mater, 2001, 13: 4500-4505.
[18] Hou Yanglong, Gao Song. Monodisperse nickel nanoparticles prepared from a monosurfactant system and their magnetic properties [J]. J Mater Chem, 2003, 13: 1510-1512.
[19] Ramesh S, Koltypin Y, Prozorov R, et al. Sono-chemical deposition and characterization of nanophasic amorphous nickel on silica microspheres [J]. Chem Mater, 1997, 9: 546-551.
[20] Choi W K, Ng V, Ng S P, et al. Raman characterization of germanium nanocrystals in amorphous silicon oxide films synthesized by rapid thermal annealing [J]. J Appl Phys, 1999, 86: 1398-1403.
[21] Wellner A, Paillard V, Bonafos C, et al. Stress measurements of germanium nanocrystals embedded in silicon oxide [J]. J Appl Phys, 2003, 94: 5639-5642.
[22] Chew H G, Zheng F, Choi W K, et al. Influence of reductant and germanium concentration on the growth and stress development of germanium nanocrystals in silicon oxide matrix [J]. Nanotechnology, 2007, 18: 65302.
[23] Yuan Cailei, Cai H, Lee P S, et al. Tuning Photoluminescence of Ge/GeO2 Core/Shell Nanoparticles by Strain [J]. J Phys Chem C, 2009, 113: 19863-19866.
[24] Yuan Cailei, Liu Qing, Xu Bo. Strain-induced structural phase transition of Si nanoparticles [J]. J Phys Chem C, 2011, 115, 16374-16377.
[25] Yuan Cailei, Lee P S, Ye S L. Formation, photoluminescence and charge storage characteristics of Au nanocrystals embedded in amorphous Al2O3 matrix [J]. Europhys Lett, 2007, 80: 67003.
[26] Benabbas T, Androussi Y, Lefebvre A. A finite-element study of strain fields in vertically aligned InAs islands in GaAs [J]. J Appl Phys, 1999, 86: 1945.
[27] Pei Q X, Lu C, Wang Y Y. Effect of elastic anisotropy on the elastic fields and vertical alignment of quantum dots [J]. J Appl Phys, 2003, 93: 1487-1492.
[28] Shin H, Lee W, Yoo Y H. Comparison of strain fields in truncated and un-truncated quantum dots in stacked InAs/GaAs nanostructures with varying stacking periods [J]. J Phys Condens Matter, 2003, 15: 3689.
[29] Yuan Cailei, Xu Bo, Lei W. Strain-induced direct band gap LaAlO3 nanocrystals [J]. Materials Letters, 2012, 68: 392-394.

备注/Memo

备注/Memo:
国家自然科学基金(11164008;11004087);江西省自然科学基金(2009GQW0007)
更新日期/Last Update: 1900-01-01