[1]安雅娟,余陨金,万浪辉,等.石墨烯带—苯环—石墨烯带结构的电子输运[J].江西师范大学学报(自然科学版),2012,(02):116-119.
 AN Ya-juan,YU Yun-jin,WAN Lang-hui,et al.The Properties of Electron Transport in the Structure of Graphene Nanoribbon-Benzene Ring-Graphene Nanoribbon[J].,2012,(02):116-119.
点击复制

石墨烯带—苯环—石墨烯带结构的电子输运()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2012年02期
页码:
116-119
栏目:
出版日期:
2012-03-01

文章信息/Info

Title:
The Properties of Electron Transport in the Structure of Graphene Nanoribbon-Benzene Ring-Graphene Nanoribbon
作者:
安雅娟;余陨金;万浪辉;卫亚东
深圳大学物理科学与技术学院,广东深圳,518060
Author(s):
AN Ya-juan;YU Yun-jin;WAN Lang-hui;WEI Ya-dong
关键词:
石墨烯带苯环伏安特性电流噪声Fano因子
Keywords:
graphene nanoribbon benzene ring I-V characteristic shot noise Fano factor
分类号:
O469
文献标志码:
A
摘要:
用非平衡格林函数和密度泛函理论相结合的第一性原理计算了石墨烯带-苯环-石墨烯带结构的伏安特性和电流噪声,发现苯环和石墨烯导线不同的连接方式给出的电子输运和电流噪声性质有显著不同,1-4连接下电流显著大于1-3连接.在研究量子器件时,量子噪声是不同于热噪声的,它是分析器件结构常用的一种手段.研究发现这2种结构的散粒噪声和Fano因子也完全不同,对于1-3结构Fano因子接近1,而对于1-4结构,Fano因子相对就较小.
Abstract:
Based on the nonequilibrium Green?s function approach and density functional theory, the I-V curve and shot noise of the structure of graphene nanoribbon-benzene ring-graphene nanoribbon were studied by ab initio method. It was found that different connections of grapheme ribbons with the benzene ring gives very different results. Symmetrical 1-4 connection gives much larger current compared with the asymmetry 1-3 connection. The shot noise and Fano factor were also calculated. Fano factor approaches to one for the asymmetrical 1-3 connection, while the symmetrical 1-4 connection gives smaller Fano factor. It was confirmed that different from the thermal noise, shot nose can be used as a method of analyzing the transport properties of the quantum structures.

参考文献/References:

[1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306: 666- 669.
[2] 胡耀娟, 金娟, 张卉, 等. 石墨烯的制备、功能化及在化学中的应用 [J]. 物理化学学报, 2010, 26(8): 2073-2086.
[3] Di Chong?an, Wei Dacheng, Yu Gui, et al. Patterned graphene as source/drain electrodes for bottom-contact organic field-effect transistors [J]. Adv Mater, 2008, 20(17): 3289-3293.
[4] Wu Jishan, Pisula W, Mullen K. Graphenes as potential material for electronics [J]. Chem Rev, 2007, 107: 718-747.
[5] Schedin F, Geim A K, Hill E W, et al. Detection of individual gas molecules absorbed on graphene [J]. Nature Materials, 2007(6): 652-655.
[6] Castro N A H, Güinea F, Peres N M R, et al. The electronic properties of grapheme [J]. Rev Mod Phys, 2009, 81: 109-162.
[7] 余陨金, 刘木林. 碳纳米管的交流输运性质 [J]. 江西师范大学学报: 自然科学版, 2007, 31(1): 44-47.
[8] Li Xiaolin, Wang Xinran, Zhang Li, et al. Chemically derived, ultra-smooth graphene nanoribbon semiconductors [J]. Science, 2008, 319: 1229-1232.
[9] Son Y W, Cohen M L, Louie S G. Half-metallic grapheme nanoribbons [J]. Nature, 2006, 444: 347-349.
[10] Datta S. Electronic transport inmesoscopic systems [M]. Cambridge: Cambridge University Press, 1997.
[11] Taylor J, Guo H, Wang J. AB initio modeling of quantum transport properties of molecular electronic devices [J]. Phys Rev B, 2001, 63: 245407.
[12] Taylor J, Guo Hong, Wang Jian. AB initio modeling of open systems: Charge transfer, electron conduction, and molecular switching of a C60 device [J]. Phys Rev B, 2001, 63: 121104.
[13] Wang Jian, Guo Hong. Relation between nonequilibrium Green’s function and Lippmann-Schwinger formalism in the first-principles quantum transport theory [J]. Phys Rev B, 2009, 79: 45119.
[14] Nano Academic Technologies Inc. NanoAcademic [EB/OL].
[2009-12-10].
[2011-10-16]. http://www.nanoacademic.ca.
[15] Bachelet G B, Hamann, Schlüter M. Pseudopotentials that work: from H to Pu [J]. Phys Rev B, 1982, 26: 4199.
[16] Perdew J P, Zunger A. Self-interaction correction to density-functional appronximations for many-electron systems [J]. Phys Rev B, 1981, 23: 5048-5079.
[17] 安兴涛, 李玉现, 刘建军. 介观物理系统中的噪声 [J]. 物理学报, 2007, 56(7): 4105-4108.
[18] Landauer R. Solid-state shot noise [J]. Phys Rev B, 1993, 47: 16427-16432.
[19] Kane C L, Fisher M P A. Nonequilibrium noise and fractional charge in the quantum hall effect [J]. Phys Rev Lett, 1994, 72: 724- 727.

备注/Memo

备注/Memo:
国家自然科学基金(10947018)
更新日期/Last Update: 1900-01-01