[1]汪小明,谢新华.一类具偏差变元的2阶微分方程周期解问题[J].江西师范大学学报(自然科学版),2012,(02):168-170.
 WANG Xiao-ming,XIE Xin-hua.The Periodic Solution for a Kind of Second Order Differential Equations with Deviating Arguments[J].,2012,(02):168-170.
点击复制

一类具偏差变元的2阶微分方程周期解问题()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2012年02期
页码:
168-170
栏目:
出版日期:
2012-03-01

文章信息/Info

Title:
The Periodic Solution for a Kind of Second Order Differential Equations with Deviating Arguments
作者:
汪小明;谢新华
上饶师范学院数学与计算机科学学院,江西上饶,334001
Author(s):
WANG Xiao-ming;XIE Xin-hua
关键词:
周期解偏差变元重合度
Keywords:
periodic solution deviating argument coincidence degree
分类号:
O175.12
文献标志码:
A
摘要:
利用重合度理论研究了一类2阶具偏差变元的泛函微分方程axn+f(t,x'(t-τi(t)))+h(t,x'(t-τ2(t)))x(t)+β(t)g(t,x(t-τ3(t)))=p(t)的周期解,得到了周期解存在性的若干结论,推广了已有的结论.
Abstract:
By employing the coincidence degree theory, a kind of second order functional differential equations with deviating arguments such as is studied. Some results on the existence of periodic solution are obtained, which generalizes the known results.

参考文献/References:

[1] 张正球, 庾建设. 一类时滞Duffing 型方程的周期解 [J]. 高校应用学报: A辑, 1998, 13(4): 389-392.
[2] 李建利, 申建华. 具脉冲时滞的Duffing 型方程的周期解 [J].应用数学学报, 2005, 28 (1): 124-133.
[3] 陈新一. 一类时滞Duffing方程周期解的存在性 [J]. 科学技术与工程, 2007, 7(18): 4684-4686.
[4] 林壮鹏, 徐远通, 郭志明. 一类有偏差变元的泛函微分方程的2?周期解 [J]. 高校应用数学学报: A辑, 2000, 15(4): 421-427.
[5] 弭鲁芳, 武延树, 张萍萍. 一类具时滞耗散型Duffing 方程的周期解 [J]. 数学的实践与认识, 2008, 38(19): 235-238.
[6] 肖兵, 周启元. 一类具有偏差变元的Duffing 型方程的周期解[J]. 江西师范大学学报: 自然科学版, 2007, 31(1): 29-33.
[7] 佘志炜, 王全义. 一类具有偏差变元的2阶泛函微分方程周期解 [J]. 华侨大学学报: 自然科学版, 2009, 30(6): 709-714.
[8] 郑春华, 刘文斌, 倪晋波, 等. 具有时滞的Rayleigh方程周期解的存在性与唯一性 [J]. 数学杂志, 2010, 30(1): 82-90.
[9] 黄德新, 鲁世平, 柳溦. 一类具偏差变元的Rayleigh方程的周期解的存在性 [J]. 安徽师范大学学报:自然科学版, 2011, 34(1): 15-19.
[10] Gains R E, Mawhin J L. Coincidence degree and nonlinear differential equations [M]. Berlin: Springer-Verlag, 1977.
[11] Zhou Yinggao, Tang Xianhua. On existence of periodic solutions of a kind of Rayleigh equation with a deviating argument [J]. Nonlinear Analysis, 2008, 69(8): 2355-2361.

相似文献/References:

[1]林文贤.关于一类具偏差变元的Duffing型方程的周期解注记[J].江西师范大学学报(自然科学版),2012,(05):499.
 LIN Wen-xian.The Notes on Periodic Solution for a Kind of Duffing Equation with Deviating Arguments[J].,2012,(02):499.
[2]李芳,张清业.一类超2次2阶哈密顿系统的无穷多周期解[J].江西师范大学学报(自然科学版),2012,(06):589.
 LI Fang,ZHANG Qing-ye.Infinitely Many Periodic Solutions for a Class of Superquadratic Second Order Hamiltonian Systems[J].,2012,(02):589.
[3]王少敏,杨存基.用最小作用原理研究具有次线性的非线性项2阶系统[J].江西师范大学学报(自然科学版),2013,(03):236.
 WANG Shao-min,YANG Cun-ji.Research Second Order Systems with Sublinear Nonlinearity by the Least Action Principle[J].,2013,(02):236.
[4]万树园,王智勇.非自治(q,p)-Laplace方程组周期解的存在性[J].江西师范大学学报(自然科学版),2016,40(05):511.
 WAN Shuyuan,WANG Zhiyong.The Existence of Periodic Solution for Nonautonomous Equations with (q,p)-Laplacian[J].,2016,40(02):511.

备注/Memo

备注/Memo:
国家级特色专业数学与应用数学(教高函
[2010]15);江西省青年自然科学基金(2009GQS0023);江西省教育厅青年科学基金(GJJ11234);上饶师范学院自然科学基金(1001)
更新日期/Last Update: 1900-01-01