[1]郭小芳,李锋,宋晓宁.一种基于PCA的时间序列异常检测方法[J].江西师范大学学报(自然科学版),2012,(03):280-283.
 GUO Xiao-fang,LI Feng,SONG Xiao-ning.The Outlier Detection Approach for Multivariate Time Series Based on PCA Analysis[J].,2012,(03):280-283.
点击复制

一种基于PCA的时间序列异常检测方法()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2012年03期
页码:
280-283
栏目:
出版日期:
2012-05-01

文章信息/Info

Title:
The Outlier Detection Approach for Multivariate Time Series Based on PCA Analysis
作者:
郭小芳;李锋;宋晓宁
江苏科技大学计算机科学与工程学院,江苏镇江212003;江苏科技大学电子信息学院,江苏镇江212003
Author(s):
GUO Xiao-fang LI Feng SONG Xiao-ning
关键词:
多元时间序列主成分分析 k-近邻异常检测
Keywords:
multivariate time series principal component analysis k-nearest neighbor outlier detection
分类号:
TP391
文献标志码:
A
摘要:
在 k-近邻局部异常检测算法的基础上,采用基于主成分分析的多元时间序列的降维方法,依据累积贡献率选择主成分序列,给出了一种效率较高的多元时间序列异常检测算法.实验结果表明:该算法可以较好地提高多元时间序列异常检测的效率
Abstract:
By means of cumulative contribution rate, dimension reduction method based on principal component analysis and principal components of multivariate time series was selected, an efficient multivariate time series outlier detection algorithm was provided based on the k-nearest neighbor local outlier detection algorithm was provide here,. the experimental results show that the algorithm can morely improve the efficiency of multivariate time series outlier detection.

参考文献/References:

[1] Rahmani B, Markazi A H D, Mozayani N. Real time prediction of time delays in a networked control system [EB/OL].
[2011-11- 15]. http: //ieeexplore. ieee. org/xpl/login. jsp?tp=&arnumber= 4537416&url=http%3A%2F%2Fieeexplore. ieee. org%2Fiel5% 2F4531369%2F4537177%2F04537416.pdf%3Farnumber%3D4537416.
[2] Sadeghzadeh N, Afshar A, Menhaj M B. An MLP neural network for time delay prediction in networked control systems [EB/OL].
[2011-11-15]. http: //ieeexplore. ieee. org/xpl/login. jsp?tp=&arnumber=4598345&url=http%3A%2F%2Fieeexplore. ieee. org%2Fxpls%2Fabs_all. jsp%3Farnumber%3D4598345.
[3] Liu Jianggang, Liu Biyu, Zhang Ruifang, et al. The new variable-period sampling scheme for networked control systems with random time delay based on BP neural network prediction [EB/OL].
[2011-11-15] http: //ieeexplore. ieee. org/xpl/login. jsp?tp=&arnumber=4347048&url=http%3A%2F%2Fieeexplore. ieee. org%2Fxpls%2Fabs_all. jsp%3Farnumber%3D4347048.
[4] Keogh E, Lin J. Finding unusual medical time-series subsequences: algorithms and applications [EB/OL].
[2011-11-15]. http: //www. cse. cuhk. edu. hk/~adafu/Pub/titb05.pdf.
[5] 林果园, 郭山清. 基于动态行为和特征模式的异常检测模型[J]. 计算机学报, 2006, 29(9): 1553-1559.
[6] 翁小清, 沈钧毅. 基于滑动窗口的多变量时间序列异常数据的挖掘 [J]. 计算机工程, 2007, 33(12): 102-104.
[7] Keogh E, Chakrabarti K, Pazzani M, et al. Dimensionality reductionfor fast similarity search in large time series databases [J]. Journal of Knowledge and Information Systems, 2001, 3(3): 263-286.
[8] 肖辉. 时间序列的相似性查询与异常检测 [D]. 上海: 复旦大学, 2005.
[9] 曲吉林, 时间序列挖掘中索引与查询技术的研究 [D]. 天津: 天津大学, 2006.
[10] 陆声链, 孤立点挖掘及其内涵知识发现的研究与应用 [D]. 南宁: 广西师范大学, 2005.
[11] 罗超, 郭晨, 梁家荣. 确定性树突状细胞算法的异常检测系统[J]. 江西师范大学学报: 自然科学版, 2011, 35(2): 170-172.
[12] 邱舟强, 滕少华, 李振坤, 等. 数据挖掘技术在网络入侵检测中的应用 [J]. 江西师范大学学报: 自然科学版, 2006, 30(1): 157-159.

相似文献/References:

[1]郭小芳,李锋,刘庆华.一种有效的多元时间序列相似性度量算法分析[J].江西师范大学学报(自然科学版),2013,(01):56.
 GUO Xiao-fang,LI Feng,LIU Qing-hua.The Analysis for an Effective Algorithm of Similarity Measurement of Multivariate Time Series[J].,2013,(03):56.

更新日期/Last Update: 1900-01-01