[1]肖丽鹏,程筠.周期微分方程中的一个扰动问题[J].江西师范大学学报(自然科学版),2012,(04):331-334.
 XIAO Li-peng,CHENG Yun.One Perturbation Problem in Periodic Differential Equations[J].,2012,(04):331-334.
点击复制

周期微分方程中的一个扰动问题()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2012年04期
页码:
331-334
栏目:
出版日期:
2012-08-01

文章信息/Info

Title:
One Perturbation Problem in Periodic Differential Equations
作者:
肖丽鹏;程筠
江西师范大学数学与信息科学学院 江西 南昌 330022;南昌航空大学数学与信息科学学院 江西 南昌 330063
Author(s):
XIAO Li-peng CHENG Yun
关键词:
周期微分方程线性无关扰动
Keywords:
periodic differential equation linearly independent perturbation
分类号:
O174.52;O175.12
文献标志码:
A
摘要:
利用值分布理论研究了2阶周期微分方程中的扰动问题,得到了系数为无穷e-型级周期整函数方程的一些扰动结果,完善了蒋翼迈和高仕安文中的扰动结果.
Abstract:
The perturbation problem of periodic second order differential equation is investigated by using value distribution theory and some perturbation results are obtained for equation with periodic entire coefficients of infinite e-type order. The results of the results due to Chiang Yik-Man and Gao Shi-An are generalized.

参考文献/References:

[1] Hayman W K. Meromorphic functions [M]. Oxford: Clarendon Press, 1975.
[2] Laine I. Nevanlinna theory and complex differential equations [M]. Berlin: Walter de Gruyter, 1993.
[3] Yang Le. Value distribution theory and it’s new researches [M]. Beijing: Beijing Science Press, 1982.
[4] Chiang Yikman, Gao Shian. On a problem in complex oscillation theory of periodic second order linear differential equations and some related perturbation results [J]. Ann Acad Sci Fenn, 2002, 27: 273-390.
[5] Bank S, Laine I, Langley J. Oscillation results for solutions of linear differential equations in the complex domain [J]. Results in Math, 1989, 16: 3-15.
[6] 高仕安, 陈特为. 复振荡理论中的一个扰动问题 [J]. 华南师范大学学报: 自然科学版, 2003(3): 25- 28.
[7] 陈特为. 复振荡扰动问题的一个进一步结果 [J]. 江西师范大学学报: 自然科学版, 2005, 29(1): 1-3.
[8] 高仕安, 陈宗煊, 陈特为. 线性微分方程的复振荡理论 [M].武汉: 华中理工大学出版社, 1998.
[9] Valiron G . Lecture on the general theory of integral functions [M]. New York: Chelsea, 1975.
[10] Jank G, Volkmann L. Meromorphe function and differential gleichungen [M]. Birk?huser: Grobe Reihe, 1985.
[11] Bank S B, Langley J. Oscillation theorems for higher order linear differential equations with entire periodic coefficients [J]. Comment Math Uni St Paul, 1992, 41: 65-85.
[12] Gao Shian. A further result on the complex oscillation theory of periodic second order linear differential equations [J].Proc Edinburgh Math Soc, 1990, 33: 143-158.

相似文献/References:

[1]张廷海,甘爱萍.Min-Algebra上矩阵的μ值[J].江西师范大学学报(自然科学版),2013,(03):225.
 ZHANG Ting-hai,GAN Ai-ping.The Value of μ of Matrices over the Min-Algebra[J].,2013,(04):225.

更新日期/Last Update: 1900-01-01