[1]方瑛,曾宇.求解布局问题的混合萤火虫群优化算法[J].江西师范大学学报(自然科学版),2012,(04):403-406.
 FANG Ying,ZENG Yu.Hybrid Glowworm Swarm Optimization Algorithm for Solving Packing Problem[J].,2012,(04):403-406.
点击复制

求解布局问题的混合萤火虫群优化算法()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2012年04期
页码:
403-406
栏目:
出版日期:
2012-08-01

文章信息/Info

Title:
Hybrid Glowworm Swarm Optimization Algorithm for Solving Packing Problem
作者:
方瑛;曾宇
湖北工业大学理学院, 湖北 武汉 430068
Author(s):
FANG Ying ZENG Yu
关键词:
矩形布局启发式策略萤火虫算法
Keywords:
layout problem heuristic tactics glowworm swarm algorithm
分类号:
O626.4
文献标志码:
A
摘要:
为了充分发挥萤火虫算法的优点,将人工萤火虫群优化算法与启发式策略相结合,设计了一个新的求解布局问题的高效萤火虫优化算法.实例测试和实验对比结果表明:相对于已有文献中的算法,提出的混合布局方法更加有效.
Abstract:
In order to give full play to the advantages of glowworm swarm algorithm, the paper designed a new efficient algorithm in which the glowworm swarm optimization algorithm has been combined with heuristic strategy to solve the packing problem. Through the comparison of experimental data, the results show that the proposed layout method is more effective than other known algorithms.

参考文献/References:

[1] 李宁, 刘飞, 孙德宝. 基于带变异算子粒子群优化算法的约束布局优化研究 [J]. 计算机学报, 2004, 27(7): 897-903.
[2] 黄建江, 须文波, 孙俊, 等. 量子行为粒子群优化算法的布局问题研究 [J]. 计算机应用, 2006, 26(12): 3015-3018.
[3] 刘国志, 赵晓颖. 一个与信籁域搜索技术相结合的微粒群算法 [J]. 江西师范大学学报: 自然科学版, 2007, 31(5): 463-466.
[4] 赵晓颖, 刘国志, 姜凤利. 求解一类不可微优化问题极大熵微粒群混合算法 [J]. 江西师范大学学报: 自然科学版, 2007, 31(2): 193-196.
[5] 鲁强, 陈明. 平面布局的蚁群算法 [J]. 计算机应用, 2005, 25(5): 1019-1022.
[6] 冯恩民, 许广键, 滕弘飞. 带平衡约束的矩形图元布局优化模型及不干涉性算法 [J]. 高校应用数学学报, 1993, 8(1): 53-60.
[7] Baker B S, Coffman J R, Rivest R L. Orthogonal packing in two dimensions [J]. Siam Journal on Computing, 1980, 9(4): 846- 855.
[8] Chazelle B. The bottom-left bin packing heuristic: an efficient implementation [J]. IEEE Transactions on Computers, 1983, 32(8): 697-707.
[9] Krishnand K N, Ghose D. Detection of multiple source locations using a glowworm metaphor with applications to collective robotics [EB/OL].
[2012-03-18]. http://ieeexplore.ieee.org/xpls/abs_all. jsp?arnumber=1501606.
[10] Krishnand K N, Ghose D. Glowworm swarm optimisation: a new method for optimising multi-modal functions [J]. International Journal of Computational Intelligence Studies, 2009, 1(1): 93- 119.
[11] Eberhart R C, Shi Y. Particle swarm optimization: Developments, applications and resources [EB/OL].
[2012-03-18]. http://www.nici. kun. nl/~aiweb/aicourses/mki44/slides/SwarmIntelligence/literature/ Eberhart01 - PSO.pdf.

更新日期/Last Update: 1900-01-01