[1]丁树良,王文义,罗芬.认知诊断中Q矩阵和Q矩阵理论[J].江西师范大学学报(自然科学版),2012,(05):441-445.
 DING Shu-liang,WANG Wen-yi,LUO Fen.Q Matrix and Q Matrix Theory in Cognitive Diagnosis[J].,2012,(05):441-445.
点击复制

认知诊断中Q矩阵和Q矩阵理论()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2012年05期
页码:
441-445
栏目:
出版日期:
2012-10-01

文章信息/Info

Title:
Q Matrix and Q Matrix Theory in Cognitive Diagnosis
作者:
丁树良;王文义;罗芬
江西师范大学计算机信息工程学院, 江西 南昌 330022
Author(s):
DING Shu-liang WANG Wen-yi LUO Fen
关键词:
Q 矩阵Q矩阵理论多级评分认知诊断多维项目反应模型
Keywords:
Q matrix Q matrix theory cognitive diagnosis with polytomous scoring multidimensional item response model
分类号:
O626.4
文献标志码:
A
摘要:
Q矩阵和Q矩阵理论是认知诊断中一对容易混淆的概念,一方面需要强调它们的差异,另一方面对Q矩阵理论做一些补充,比如在一定条件下,多级评分的认知诊断中测验蓝图的设计原理.根据实测数据对测验蓝图Q矩阵修正的设想,以及认知诊断模型和多维项目反应模型的联系.
Abstract:
Q matrix and Q matrix theory are easy confusable. The difference between them is emphasized and the complement of Q matrix theory is given in this note. Especially, how to design the blueprint for the cognitive diagnosis with the 0-1 scoring or polytomous scoring is discussed. Moreover, there is a scheme for modification of the test Q matrix and an idea of how to use the multidimensional item response model to analyze the data with large granularity of the attributes in the part of discussion of the note.

参考文献/References:

[1] 汪文义. 认知诊断评估中项目属性辅助标定方法研究 [D]. 南昌: 江西师范大学,
[2] Leighton J P, Gierl M J, Hunka S M. The attribute hierarchy method for cognitive assessment: a variation on Tatsuoka's rule-space approach [J]. Journal of Educational Measurement, 2004, 41(3): 205-237.
[3] Tatsuoka K K. Cognitive assessment : an introduction to the rule space method [M]. New York: Taylor & Francis Group, 2009.
[4] 左孝凌, 李为鑑, 刘永才. 离散数学 [M]. 上海: 上海科学技术文献出版社, 1983.
[5] 杨淑群, 丁树良. 有效对象的判定理论与方法 [J]. 江西师范大学学报: 自然科学版, 2011, 35(1): 1-4.
[6] 杨淑群, 蔡声镇,丁树良,等. 求解简化Q矩阵的扩张算法[J]. 兰州大学学报: 自然科学版, 2008, 44(3): 87-91, 96.
[7] Tatsuoka K K. Architecture of knowledge structures and cognitive diagnosis: a statistical pattern classi?cation approach [C]. Erlbaum: Hillsdale, 1995: 327-359.
[8] Ding Shuliang, Luo Fen, Cai Yan, et al. Complement to Tatsuoka’s Q matrix theory [C]. Tokyo: Universal Academy Press: 417-424.
[9] 丁树良, 祝玉芳, 林海菁, 等. Tatsuoka Q矩阵理论的修正 [J]. 心理学报, 2009, 41: 175-181.
[10] Yang Shuqun, Ding Shuliang, Ding Qiulin. Incremental augment algorithm based on reduced Q-matrix [J]. Transactions of Nan jing Univiersity of Aeronautics & Astronautics, 2010,27(2): 183-189.
[11] 丁树良, 杨淑群, 汪文义. 可达矩阵在认知诊断测验编制中的重要作用 [J]. 江西师范大学学报: 自然科学版, 2010, 34(4): 490-495.
[12] 丁树良, 汪文义, 杨淑群. 认知诊断测验蓝图的设计 [J]. 心理科学, 2011, 34: 258-265.
[13] 汪文义, 丁树良, 游晓锋. 计算机化自适应诊断测验中原始题的属性标定 [J]. 心理学报, 2011, 43: 964-976.
[14] Junker B W, Sijtsma K. Cognitive assessment models with few assumptions, and connections with nonparametric item response theory [J]. Applied Psychological Measurement, 2001, 25: 258- 272.
[15] 祝玉芳, 丁树良. 基于等级反应模型的属性层级方法 [J]. 心理学报, 2009, 41: 267-275.
[16] 田伟, 辛涛. 基于等级反应模型的规则空间方法 [J]. 心理学报, 2012, 44(1): 249-262.
[17] Chen Ping, Xin Tao, Wang Chun, et al. Online calibration methods for the DINA model with independent attributes in CD-CAT [J]. Psychometrika, 2012, 77: 201-222.
[18] 陈平. 认知诊断计算机化自适应测验的项目增补: 以 DINA 模型为例 [D]. 北京: 北京师范大学, 2011.
[19] de la Torre J. An empirically based method of Q-matrix validation for the DINA model: development and applications [J]. Journal of Educational Measurement, 2008.45: 343-362.
[20] 涂冬波, 蔡艳, 戴海琦. 基于DINA模型的Q矩阵修正方法 [J]. 心理学报, 2012, 44: 558-568.

相似文献/References:

[1]丁树良,汪文义,罗芬,等.多值Q矩阵理论[J].江西师范大学学报(自然科学版),2015,(04):365.
 DING Shuliang,WANG Wenyi,LUO Fen,et al.The Polytomous Q-Matrix Theory[J].,2015,(05):365.

更新日期/Last Update: 1900-01-01