[1]杨碧珑,易才凤.一类亚纯系数高阶线性微分方程解的增长性[J].江西师范大学学报(自然科学版),2012,(05):477-481.
 YANG Bi-long,YI Cai-feng.The Growth for Solutions of a Class of Higher Order Linear Differential Equations with Meromorphic Coefficient[J].,2012,(05):477-481.
点击复制

一类亚纯系数高阶线性微分方程解的增长性()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2012年05期
页码:
477-481
栏目:
出版日期:
2012-10-01

文章信息/Info

Title:
The Growth for Solutions of a Class of Higher Order Linear Differential Equations with Meromorphic Coefficient
作者:
杨碧珑;易才凤
江西师范大学数学与信息科学学院, 江西 南昌 330022
Author(s):
YANG Bi-long YI Cai-feng
关键词:
微分方程亚纯函数亏值
Keywords:
differential equation meromorphic function deficient value order
分类号:
O174.52
文献标志码:
A
摘要:
运用Nevanlinna值分布的理论和方法,研究了微分方程f () k+A f ()1 k k??1++▓A f Af 1′+=0(2) k≥解的增长性,其中(1 A j≤≤j k A?1),为亚纯函数,假设 A 是以∞为亏值的超越亚纯函数,通过给定A (1 j k?≤≤1)的不同条件,证明了齐次线性微分方程的任一非零解均为无穷级.
Abstract:
The growth of solutions of the differential equation is investigated by using the fundamental theory and method of Nevanlinna, where and ?/ 0 are meromorphic functions. Assuming that is transcendental and has a deficient value , it is proved that every solution ?/ 0 of the equation is of infinite order with giving some different condition on .

参考文献/References:

[1] Hayman W K. Meromorphic function [M]. Oxford: Clarendon Press, 1964.
[2] 杨乐. 值分布论及其新研究 [M]. 北京: 科学出版社, 1982.
[3] Chen Zongxuan, Gao Shian. Some oscillation theorems of higher order non- homogeneous linear differential equations with transcendental meromorphic coefficients [J]. Ann of Diff Eqs, 1996, 12: 28-39.
[4] Wu Pengcheng, Wu Shenjian, Zhu Jun. On the growth of solutions of the second order complex differential equation with meromorphic coefficients [J]. Jourmal of Inequalities and Applications, 2012(1): 117.
[5] Zhang Guanghong. The theory of entire function and meromorphic fuction [M]. Beijing: Publication of China Science, 1986.
[6] Gundersen G. Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates [J]. London Math Soc, 1988, 37(2): 88-104.
[7] 毛志强. 某类2阶微分方程解的增长与零点 [J]. 江西师范大学学报: 自然科学版, 2001, 25(4):334-338.
[8] 涂金, 陈宗煊. 某些高阶微分方程的复振荡 [J]. 江西师范大学学报: 自然科学版, 2005, 29(1): 8-11.
[9] 宫娟, 陈宗煊. 关于2阶线性微分方程解的增长性 [J]. 华南师范大学学报: 自然科学版, 2012, 44(1): 29-32.
[10] 肖丽鹏, 陈宗煊. 一类高阶整函数系数线性微分方程解的超级 [J]. 数学杂志, 2008, 27(1): 47-52.

相似文献/References:

[1]易才凤,李爱平.一类复合差分函数零点的估计[J].江西师范大学学报(自然科学版),2012,(01):41.
 YI Cai-feng,LI Ai-ping.The Estimate on Zeros of Composition Differences of Meromorphic Functions[J].,2012,(05):41.
[2]赵小珍.亚纯函数及其导数分担小函数集的唯一性[J].江西师范大学学报(自然科学版),2012,(02):141.
 ZHAO Xiao-zhen.The Uniqueness of Meromorphic Functions and Their Derivatives Weighted-Sharing the Sets of Small Functions[J].,2012,(05):141.
[3]石磊,易才凤.一类高阶线性微分方程解的增长性[J].江西师范大学学报(自然科学版),2012,(03):230.
 SHI Lei,YI Cai-feng.The Growth of Solutions for a Class Higher Order Linear Differential Equations[J].,2012,(05):230.
[4]冯斌,刘慧芳,李延玲.一类高阶微分方程解的增长性[J].江西师范大学学报(自然科学版),2012,(04):335.
 FENG Bin,LIU Hui-fang,LI Yan-ling.On the Growth for Solutions of a Certain Higher Order Differential Equation[J].,2012,(05):335.
[5]李延玲,刘慧芳,冯斌.微分方程f′′+A_1(z)e~(az~n)f′+A_0(z)e~(bz~n)f=F(z)的复振荡[J].江西师范大学学报(自然科学版),2012,(06):579.
 LI Yan-ling,LIU Hui-fang,FENG Bin.On the Complex Oscillation of Differential Equations[J].,2012,(05):579.
[6]易才凤,刘旭强.方程f″+Af'+Bf=0的解在角域内的增长性及Borel方向[J].江西师范大学学报(自然科学版),2013,(01):1.
 YI Cai-feng,LIU Xu-qiang.The Growth and Borel Direction of Solutions for Differential Equation f" + Af' + Bf =0 in Angular Domains[J].,2013,(05):1.
[7]肖丽鹏,李明星.单位圆内非齐次线性微分方程的振荡解[J].江西师范大学学报(自然科学版),2013,(02):166.
 XIAO Li-peng,LI Ming-xing.Oscillatory Solutions of Nonhomogeneous Linear Differential Equation in the Unit Disc[J].,2013,(05):166.
[8]吴佳,吴芬,陈裕先.向量值亚纯函数的亏量[J].江西师范大学学报(自然科学版),2013,(03):229.
 WU Jia,WU fen,CHEN Yu-xian.Deficiency of Vector Valued Meromorphic Function[J].,2013,(05):229.
[9]安蕾,肖丽鹏.一类2阶微分方程的解和小函数的关系[J].江西师范大学学报(自然科学版),2013,(03):233.
 AN Lei,XIAO Li-peng.The Relation between Solutions of a Class of Second Order Differential Equation with Functions of Small Growth[J].,2013,(05):233.
[10]许淑娟,易才凤.高阶线性微分方程的解在角域内的增长性及Borel方向[J].江西师范大学学报(自然科学版),2013,(04):401.
 XU Shu-juan,YI Cai-feng.The Growth and Borel Direction of Solutions of Higher Order Linear Differential Equation in Angular Domains[J].,2013,(05):401.
[11]刘旭强,易才凤.关于2阶线性微分方程f″+Af'+Bf=0解的增长性[J].江西师范大学学报(自然科学版),2013,(02):171.
 LIU Xu-qiang,YI Cai-feng.On the Growth of Solutions of the Second Order Linear Differential Equation f"+Af'+Bf =0[J].,2013,(05):171.
[12]艾丽娟,易才凤.一类亚纯系数高阶线性微分方程解的增长性[J].江西师范大学学报(自然科学版),2014,(03):250.
 AI Li-juan,YI Cai-feng.The Growth for Solutions of a Class of Higher Order Linear Differential Equations with Meromorphic Coefficients[J].,2014,(05):250.
[13]杨碧珑,易才凤.一类高阶线性微分方程解在角域上的增长性[J].江西师范大学学报(自然科学版),2014,(04):390.
 YANG Bi-long,YI Cai-feng.The Growth of Solutions of a Class Higher Order Linear Differential Equations in Angular Donains[J].,2014,(05):390.

更新日期/Last Update: 1900-01-01