[1]林文贤.关于一类具偏差变元的Duffing型方程的周期解注记[J].江西师范大学学报(自然科学版),2012,(05):499-501.
 LIN Wen-xian.The Notes on Periodic Solution for a Kind of Duffing Equation with Deviating Arguments[J].,2012,(05):499-501.
点击复制

关于一类具偏差变元的Duffing型方程的周期解注记()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2012年05期
页码:
499-501
栏目:
出版日期:
2012-10-01

文章信息/Info

Title:
The Notes on Periodic Solution for a Kind of Duffing Equation with Deviating Arguments
作者:
林文贤
韩山师范学院数学与应用数学系, 广东 潮州 521041
Author(s):
LIN Wen-xian
关键词:
Duffing型方程周期解重合度
Keywords:
Duffing equation periodic solution coincidence degree
分类号:
O175.14
文献标志码:
A
摘要:
利用重合度理论以及更精确的先验估计研究了一类具有偏差变元的 Duffing 型方程的周期解问题,得到了这类方程的周期解存在性的结果,改进和推广了已有文献的相关结果,并给出其应用实例.
Abstract:
By coincidence degree’s theory and better prior estimate, the existence of periodic solutions to a kind of Duffing equation with deviating arguments is studied. Some new results on the existence of periodic solutions to such equation are obtained, which improve some existing ones in the literature. An example is given.

参考文献/References:

[1] 弭鲁芳, 武延树, 张萍萍. 一类具时滞耗散型Duffing方程的周期解 [J]. 数学的实践与认识, 2008, 38(19): 235-238.
[2] 黄记洲. 一类时滞Duffing方程周期存在性的充分性定理 [J]. 甘肃联合大学学报: 自然科学版, 2006, 20(6): 29-31.
[3] 沈钦锐, 周宗福. 一类三阶时滞Duffing型方程周期解的存在唯一性 [J]. 集美大学学报: 自然科学版, 2012, 17(2): 142-146.
[4] Li Xiaojiang, Zhou Youming, Chen Xuangqing, et al. On the existence and uniqueness of periodic solution for Duffing type differential equations with a deviating argument [J]. Mathematica Applicata, 2012, 25(2): 335-340.
[5] 刘怡建, 陈晓星. 一类带时滞的Duffing方程概周期解的存在性 [J]. 福州大学学报: 自然科学版, 2011, 39(3): 329-333.
[6] 李潇寰, 蒋振. 一类中立型Duffing方程的周期解 [J]. 宝鸡文理学院: 自然科学版, 2011, 31(3): 10-12.
[7] 张正球, 庚建设. 一类时滞Duffing型方程的周期解 [J]. 高校应用数学学报: A辑, 1998, 13(4): 389-392.
[8] 肖兵, 周启元. 一类具偏差变元的Duffing型方程的周期解 [J].江西师范大学学报: 自然科学版, 2007, 31(1): 29-33.
[9] Gaines R E, Mawhin J L. Lecture notes in math [M]. Berlin: Springer-Verlag, 1977. 黄先开, 向子贵. 具有时滞的Duffing型方程x?+g(x(t??(t)))= p(t)的2?周期解 [J]. 科学通报, 1994, 39(3): 201-203

相似文献/References:

[1]汪小明,谢新华.一类具偏差变元的2阶微分方程周期解问题[J].江西师范大学学报(自然科学版),2012,(02):168.
 WANG Xiao-ming,XIE Xin-hua.The Periodic Solution for a Kind of Second Order Differential Equations with Deviating Arguments[J].,2012,(05):168.
[2]李芳,张清业.一类超2次2阶哈密顿系统的无穷多周期解[J].江西师范大学学报(自然科学版),2012,(06):589.
 LI Fang,ZHANG Qing-ye.Infinitely Many Periodic Solutions for a Class of Superquadratic Second Order Hamiltonian Systems[J].,2012,(05):589.
[3]王少敏,杨存基.用最小作用原理研究具有次线性的非线性项2阶系统[J].江西师范大学学报(自然科学版),2013,(03):236.
 WANG Shao-min,YANG Cun-ji.Research Second Order Systems with Sublinear Nonlinearity by the Least Action Principle[J].,2013,(05):236.
[4]万树园,王智勇.非自治(q,p)-Laplace方程组周期解的存在性[J].江西师范大学学报(自然科学版),2016,40(05):511.
 WAN Shuyuan,WANG Zhiyong.The Existence of Periodic Solution for Nonautonomous Equations with (q,p)-Laplacian[J].,2016,40(05):511.

更新日期/Last Update: 1900-01-01