[1]李延玲,刘慧芳,冯斌.微分方程f′′+A_1(z)e~(az~n)f′+A_0(z)e~(bz~n)f=F(z)的复振荡[J].江西师范大学学报(自然科学版),2012,(06):579-583.
 LI Yan-ling,LIU Hui-fang,FENG Bin.On the Complex Oscillation of Differential Equations[J].,2012,(06):579-583.
点击复制

微分方程f′′+A_1(z)e~(az~n)f′+A_0(z)e~(bz~n)f=F(z)的复振荡()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2012年06期
页码:
579-583
栏目:
出版日期:
2012-12-01

文章信息/Info

Title:
On the Complex Oscillation of Differential Equations
作者:
李延玲;刘慧芳;冯斌
江西师范大学数学与信息科学学院, 江西 南昌330022
Author(s):
LI Yan-ling LIU Hui-fang FENG Bin
关键词:
微分方程整函数增长级超级
Keywords:
differential equationentire functionorder of growthhyper-order
分类号:
O174.52
文献标志码:
A

参考文献/References:

[1] 杨乐. 值分布论及其新研究 [M]. 北京: 科学出版社, 1982.
[2] 何育赞, 肖修治. 代数体函数与常微分方程 [M]. 北京: 科学出版社, 1988.
[3] 高仕安, 陈宗煊, 陈特为. 线性微分方程的复振荡理论 [M]. 武昌: 华中理工大学出版社, 1997.

相似文献/References:

[1]涂金,刘翠云,徐洪焱.亚纯函数相对于(r)的[p,q]增长级[J].江西师范大学学报(自然科学版),2012,(01):47.
 TU Jin,LIU Cui-yun,XU Hong-yan.Meromorphic Functions of Relative [p,q] Order to (r)[J].,2012,(06):47.
[2]冯斌,刘慧芳,李延玲.一类高阶微分方程解的增长性[J].江西师范大学学报(自然科学版),2012,(04):335.
 FENG Bin,LIU Hui-fang,LI Yan-ling.On the Growth for Solutions of a Certain Higher Order Differential Equation[J].,2012,(06):335.
[3]杨碧珑,易才凤.一类亚纯系数高阶线性微分方程解的增长性[J].江西师范大学学报(自然科学版),2012,(05):477.
 YANG Bi-long,YI Cai-feng.The Growth for Solutions of a Class of Higher Order Linear Differential Equations with Meromorphic Coefficient[J].,2012,(06):477.
[4]易才凤,刘旭强.方程f″+Af'+Bf=0的解在角域内的增长性及Borel方向[J].江西师范大学学报(自然科学版),2013,(01):1.
 YI Cai-feng,LIU Xu-qiang.The Growth and Borel Direction of Solutions for Differential Equation f" + Af' + Bf =0 in Angular Domains[J].,2013,(06):1.
[5]刘旭强,易才凤.关于2阶线性微分方程f″+Af'+Bf=0解的增长性[J].江西师范大学学报(自然科学版),2013,(02):171.
 LIU Xu-qiang,YI Cai-feng.On the Growth of Solutions of the Second Order Linear Differential Equation f"+Af'+Bf =0[J].,2013,(06):171.
[6]许淑娟,易才凤.高阶线性微分方程的解在角域内的增长性及Borel方向[J].江西师范大学学报(自然科学版),2013,(04):401.
 XU Shu-juan,YI Cai-feng.The Growth and Borel Direction of Solutions of Higher Order Linear Differential Equation in Angular Domains[J].,2013,(06):401.
[7]胡军,易才凤.高阶非齐次线性微分方程解沿径向的振荡性质[J].江西师范大学学报(自然科学版),2014,(02):162.
 HU Jun,YI Cai-feng.The Radial Oscillation of Higher Order Non-Homogeneous Linear Differential Equation[J].,2014,(06):162.
[8]艾丽娟,易才凤.一类亚纯系数高阶线性微分方程解的增长性[J].江西师范大学学报(自然科学版),2014,(03):250.
 AI Li-juan,YI Cai-feng.The Growth for Solutions of a Class of Higher Order Linear Differential Equations with Meromorphic Coefficients[J].,2014,(06):250.
[9]杨碧珑,易才凤.一类高阶线性微分方程解在角域上的增长性[J].江西师范大学学报(自然科学版),2014,(04):390.
 YANG Bi-long,YI Cai-feng.The Growth of Solutions of a Class Higher Order Linear Differential Equations in Angular Donains[J].,2014,(06):390.
[10]龚攀,肖丽鹏.某类高阶复微分方程解的增长性[J].江西师范大学学报(自然科学版),2014,(05):512.
 GONG Pan,XIAO Li-peng.The Growth of Solutions of a Class of Higher Order Complex Differential Equations[J].,2014,(06):512.
[11]石磊,易才凤.一类高阶线性微分方程解的增长性[J].江西师范大学学报(自然科学版),2012,(03):230.
 SHI Lei,YI Cai-feng.The Growth of Solutions for a Class Higher Order Linear Differential Equations[J].,2012,(06):230.
[12]安蕾,肖丽鹏.一类2阶微分方程的解和小函数的关系[J].江西师范大学学报(自然科学版),2013,(03):233.
 AN Lei,XIAO Li-peng.The Relation between Solutions of a Class of Second Order Differential Equation with Functions of Small Growth[J].,2013,(06):233.
[13]钟文波,易才凤.一类高阶线性微分方程解的增长级[J].江西师范大学学报(自然科学版),2014,(04):399.
 ZHONG Wen-bo,YI Cai-feng.On the Growth of Solutions of a Class of Higher Order Linear Differential Equations[J].,2014,(06):399.
[14]闵小花,张红霞,易才凤.2阶微分方程的解与小函数的关系[J].江西师范大学学报(自然科学版),2014,(06):551.
 MIN Xiao-hua,ZHANG Hong-xia,YI Cai-feng.The Relations between Solutions of Second Order Linear Differential Equations with Functions of Small Growth[J].,2014,(06):551.

更新日期/Last Update: 1900-01-01