[1]何静,郑秀敏.几类高阶线性微分方程亚纯解的迭代级[J].江西师范大学学报(自然科学版),2012,(06):584-588.
 HE Jing,ZHENG Xiu-min.The Iterated Order of Meromorphic Solutions of Some Classes of Higher Order Linear Differential Equations[J].,2012,(06):584-588.
点击复制

几类高阶线性微分方程亚纯解的迭代级()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2012年06期
页码:
584-588
栏目:
出版日期:
2012-12-01

文章信息/Info

Title:
The Iterated Order of Meromorphic Solutions of Some Classes of Higher Order Linear Differential Equations
作者:
何静;郑秀敏
江西师范大学数学与信息科学学院, 江西 南昌, 330022
Author(s):
HE Jing ZHENG Xiu-min
关键词:
线性微分方程亚纯解迭代级迭代零点收敛指数
Keywords:
linear differential equationmeromorphic solutioniterated orderiterated convergence exponent of zero sequence
分类号:
O174.52
文献标志码:
A
摘要:
研究了几类具有迭代级亚纯函数系数的高阶线性微分方程亚纯解的增长性和零点分布问题,当系数a0或ad对其它系数起支配作用时,得到了方程满足一定条件的亚纯解的迭代级的一些结果,所得结果推广了前人已有结果.
Abstract:
The growth and the distribution of zeros of meromorphic solutions of some classes of higher order lin-ear differential equations with meromorphic coefficients of iterated orders are investigated. Some results on the it-erated order of the solutions, which satisfy some conditions are obtained, when the coefficient a0 or ad dominates the other coefficients. Our results are extensions on previous results.

参考文献/References:

[1] 石磊, 易才凤. 一类高阶线性微分方程解的增长性 [J]. 江西师范大学学报: 自然科学版, 2012, 36(3): 230-233.
[2] 龙见仁, 伍鹏程. 单位圆上高阶线性微分方程解的性质 [J]. 江西师范大学学报: 自然科学版, 2012, 36(2): 147-150.
[3] 杨乐.值分布论及其新研究 [M]. 北京: 科学出版社, 1982.
[4] Bernal L G. On growth k-order of solutions of a complex homogeneous linear differential equation [J]. Proc Amer Math Soc, 1987, 101(2): 317-322.
[5] Kinnunen L. Linear differential equations with solutions of finite iterated order [J]. Southeast Asian Bull Math, 1998, 22(4): 385-405.
[6] Laine I. Nevanlinna theory and complex differential equations [M]. Berlin: de Gruyter Studies in Mathematics, 1993.
[7] 陈玉, 陈宗煊.几类高阶线性微分方程亚纯解的增长性 [J]. 数学研究与评论. 2007, 27(4): 826-831.
[8] Tu Jin, Chen Zongxuan. Growth of solutions of complex differential equations with meromorphic coefficients of finite iterated order [J]. Southeast Asian Bull Math, 2009, 33(1): 153-164.
[9] Tu Jin, Long Teng.Oscillation of complex high order linear differential equations with coefficients of finite iterated order [J]. Electronic Journal of Qualitative Theory of Differential Equations, 2009, 66: 1-13.
[10] 涂金, 陈宗煊, 曹廷彬. 几类微分方程解的迭代解与零点收敛指数 [J].数学研究与评论, 2006, 26(4): 757-763.
[11] Frank G, Hellerstein S. On the meromorphic solutions of non- homogeneous linear differential equations with polynomial coefficients [J]. Proc London Math Soc, 1986, 53(3): 407-428.
[12] 肖丽鹏, 陈宗煊. 一类高阶微分方程亚纯解的增长性 [J]. 数学研究, 2005, 38(3): 265-271.

相似文献/References:

[1]龙见仁,伍鹏程.单位圆上高阶线性微分方程解的性质[J].江西师范大学学报(自然科学版),2012,(02):147.
 LONG Jian-ren,WU Peng-cheng.On the Properities of Solutions for Higher Order Linear Differenrial Equations in the Unit Disc[J].,2012,(06):147.
[2]肖丽鹏,李明星.单位圆内非齐次线性微分方程的振荡解[J].江西师范大学学报(自然科学版),2013,(02):166.
 XIAO Li-peng,LI Ming-xing.Oscillatory Solutions of Nonhomogeneous Linear Differential Equation in the Unit Disc[J].,2013,(06):166.
[3]占燕燕,肖丽鹏.2阶齐次微分方程的次正规解[J].江西师范大学学报(自然科学版),2014,(02):158.
 ZHAN Yan-yan,XIAO Li-peng.The Subnormal Solutions of Second Order Homogeneous Differential Equations[J].,2014,(06):158.
[4]占美龙,郑秀敏.关于单位圆内亚纯系数线性微分方程解的微分多项式的值分布[J].江西师范大学学报(自然科学版),2014,(05):506.
 ZHAN Mei-long,ZHENG Xiu-min.The Value Distribution of Differential Polynomials Generated by Solutions of Linear Differential Equations with Meromorphic Coefficients in the Unit Disc[J].,2014,(06):506.
[5]易才凤,钟文波.2阶微分方程f "+ Af '+ Bf =0解的增长性[J].江西师范大学学报(自然科学版),2015,(04):340.
 YI Caifeng,ZHONG Wenbo.On the Growth of Solution to the Second Order Differential Equation f " +Af ' +Bf =0[J].,2015,(06):340.
[6]罗丽琴,郑秀敏.具[p,q]-φ级亚纯系数的2阶线性微分方程解的复振荡[J].江西师范大学学报(自然科学版),2016,40(04):331.
 LUO Liqin,ZHENG Xiumin.The Complex Oscillation of a Second Order Linear Differential Equation with Meromorphic Coefficients of [p,q]-φ Order[J].,2016,40(06):331.

更新日期/Last Update: 1900-01-01