[1]孙玉华,曾庆铎,王来生.区间规划问题的Wolfe型对偶理论[J].江西师范大学学报(自然科学版),2012,(06):594-597.
 ZHAO Liang,LIU Xue-wen.Wolfe Duality Theory for Interval-Valued Programming[J].,2012,(06):594-597.
点击复制

区间规划问题的Wolfe型对偶理论()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2012年06期
页码:
594-597
栏目:
出版日期:
2012-12-01

文章信息/Info

Title:
Wolfe Duality Theory for Interval-Valued Programming
作者:
孙玉华;曾庆铎;王来生
北京科技大学数理学院, 北京 100083;中国农业大学理学院, 北京 100083
Author(s):
ZHAO Liang LIU Xue-wen
关键词:
不确定优化区间规划对偶( )- -( )-p r ρ ηθ 不变凸函数
Keywords:
uncertain optimizationinterval-valued programmingduality( )- -( )-p r ρ ηθ invexity functions
分类号:
O224;O221.2
文献标志码:
A
摘要:
讨论了目标函数和约束函数是区间函数的区间规划问题.首先定义了 LU 最优解的概念,并给出了一类新的Wolfe型对偶模型,在(,)--(,)-p r ρηθ不变凸函数定义下证明了弱对偶定理、强对偶定理和逆对偶定理.
Abstract:
Interval-valued programming where the objective function and constrict functions are interval-valued functions is considered. The concepts of LU optimal solution to interval-valued programming problem is defined. A new type dual for interval-valued optimization problem is formulated. Under ( , )- -( , )-p r ρ ηθ invexity assumptions, weak, strong and converse duality results are proved.
更新日期/Last Update: 1900-01-01