[1]曹寒问,田伟.一类含η-次可微映射的广义拟-似变分包含组[J].江西师范大学学报(自然科学版),2012,(06):602-606.
 FANG Jing,ZHANG Yi,WEN Li-min.A System of Generalized Quasi-Variational-Like Inclusions withη-Subdifferentiable Mappings[J].,2012,(06):602-606.
点击复制

一类含η-次可微映射的广义拟-似变分包含组()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2012年06期
页码:
602-606
栏目:
出版日期:
2012-12-01

文章信息/Info

Title:
A System of Generalized Quasi-Variational-Like Inclusions withη-Subdifferentiable Mappings
作者:
曹寒问;田伟
南昌工程学院理学系, 江西 南昌, 330099;南昌工程学院信息工程学院, 江西 南昌, 330099
Author(s):
FANG Jing ZHANG Yi WEN Li-min
关键词:
广义拟-似变分包含组η-近似映射单调映射迭代算法
Keywords:
system of generalized quasi-variational-like inclusionsη-proximal mappingmonotone mappingit-erative algorithm
分类号:
O177.91
文献标志码:
A
摘要:
使用η-近似映射技巧,证明一类含η-次可微映射的广义拟-似变分包含组解的存在性和1个N-步迭代算法的收敛性,改进和推广了近期一些熟知的结果.
Abstract:
The existence of solutions and the convergence of some N-step iterative algorithms for the system of generalized quasi-variational-like inclusions withη-subdifferentiable mappings are proved by using theη-proximal mapping technique, which extend and improve some known results in the literature.

参考文献/References:

[1] Ding Xieping. Generalized quasi-variational-like inclusions with nonconvex functional [J]. Appl Math Comput, 2001, 122: 267-282.
[2] He Zhenhua , Gu Feng. Generalized system for relaxed cocoercive mixed variational inequalities in Hilbert spaces [J]. Appl Math Comput, 2009, 214(1): 26-30.
[3] Chang S S , Joseph Lee H W , Chan C K. Generalized system for relaxed cocoercive variational inequalities in Hilbert spaces [J]. Appl Math Letters, 2007, 20(3): 329-334.
[4] Verma R U. General convergence analysis for two-step projection methods and applications to variational problems [J]. Appl Math Letters, 2005, 18(11): 1286-1292.
[5] Verma R U. Projection methods, algorithms and a new system of nonlinear variational inequalities [J].Comput Math Appl, 2001, 42(7/8): 1025-1031.
[6] Huang Zhenyu , Noor M A. An explicit projection method for a system of nonlinear variational inequalities with different (γ, r)- cocoercive mapping [J]. Appl Math Comput, 2007(1), 190: 356-361.
[7] Hajjafar A, Verma R U. General approximation solvability of a system of strongly g-r-pseudomonotonic nonlinear variational inequalities and projection methods [J]. Math Comput Modelling, 2006, 43(1/2): 150-157.
[8] Ahmad R , Siddiqi A H, Khan Z. Proximal point algorithm for generalized multivalued nonlinear quasi-variational-like inclusions in Banach Spaces [J]. Appl Math Comput, 2005, 163(1): 295-308.
[9] Yang Qingzhi. On a generalized system for relaxed cocoercive variational inequalities and projection methods [J]. J Optim Theory Appl, 2006, 130(3): 545-547.
[10] Peng Jianwen, Zhu Daoli. A new system of generalized mixed quasi-variational inclusion with (H, η)-monotone operators [J]. J Math Anal Appl, 2007, 327(1): 157-187.
[11] 张旭, 叶志强, Banach空间中-类含H-增生算子的新型广义非线性混含似变分包含组[J]. 重庆师范大学学报: 自然科学版, 2006,23(4): 6-9, 24.
[12] Nadler S B. Multi-valued contraction mappings [J].Paci?c J Math, 1969, 30(2): 475-486.

更新日期/Last Update: 1900-01-01