[1]桑明煌,李新华,余子星,等.基于对称金属包覆波导的高精度微位移测量[J].江西师范大学学报(自然科学版),2013,(02):111-115.
 SANG Ming-huang,LI Xin-hua,YU Zi-xing,et al.High-Precision Measurement of Small Distance Utilizing the Symmetrical Metal-Cladding Waveguide[J].,2013,(02):111-115.
点击复制

基于对称金属包覆波导的高精度微位移测量()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年02期
页码:
111-115
栏目:
出版日期:
2013-03-01

文章信息/Info

Title:
High-Precision Measurement of Small Distance Utilizing the Symmetrical Metal-Cladding Waveguide
作者:
桑明煌;李新华;余子星;戴海浪
江西师范大学物理与通信电子学院,江西南昌,330022;江西省星子中学,江西九江,332800
Author(s):
SANG Ming-huang;LI Xin-hua;YU Zi-xing;DAI Hai-lang
关键词:
对称金属包覆波导超高阶导模微位移测量
Keywords:
symmetry metal-cladding waveguideultra-high order modemicro-displacement measurement
分类号:
TN252
文献标志码:
A
摘要:
利用对称金属包覆波导中超高阶导模对入射角度高度灵敏的特性,提出了一种新型的实时高精度微位移测量方法.与将压电材料置于导波层中不同,该方法是在压电材料上粘合一平面镜,并放置于一凸透镜的焦平面处.当对压电材料加载电压而产生微位移时,经凸透镜返回的2条边缘光线会产生微小的入射角度变化,从而引起反射光强的急剧改变.该方法的微位移测量精度和测量范围分别为0.5和170nm,且具有结构简单、实时测量等优点,可应用于微机电系统和精密控制领域.
Abstract:
Based on the ultra-high order mode with high-sensitivity to the variance of incidence angle in the symmetry metal-cladding waveguide,a real-time and high-precision micro-displacement measurement method has been theoretically analyzed and experimentally demonstrated.It is shown that the piezoelectric material is not placed in the guiding layer but connected with one mirror,and that the combination of piezoelectric material and mirror is located at the focal plane of one convex lens.In particular,when a voltage is applied to the piezoelectric material,the resulted micro-displacement will give rise to a tiny variance of incidence angle in the light coming back from the convex lens,and then a sharp change in the reflected light intensity will be obtained.The experiment shows that the micro-displacement measurement resolution is 0.5 nm and the measurement range is 170 nm,and furthermore,this scheme is of simple structure,real-time measurement and may be of potential application in micro-electro-mechanical systems and fine control area.

参考文献/References:

[1] Cooper E B,Post E R,Griffith S,et al.High-resolution micromachined interferometric accelerometer [J].Appl Phys Lett,2000,76(22):3316-3318.
[2] 张群雁,周震,冯丽爽,等.新型微米光栅加速度计光学结构研究 [J].光学学报,2010,30(6):1796-1799.
[3] 熊幸果,陆德仁,卢平芳,等.微力微位移天平测试方法 [J].传感技术学报,1997,10(2):47-52.
[4] Kuwamura S,Yamaguchi L.Wavelength scanning profilometry for real-time surface shape measuement [J].Appl Opt,1997,36(19):4473-4482.
[5] Yang Haijun,Deibel J,Nyberg S,et al.High-precision absolute distance and vibration measurement with frequency scanned interferometry [J].Appl Opt,2005,44(19):3937-3944.
[6] Wang S F,Chiu M H,Chen Weiwu,et al.Small-displacement sensing system based on multiple total internal refelctions in heterodyne interferometry [J].Appl Opt,2009,48(13):2566-2573.
[7] Howard L,Stone J,Fu J.Real-time displacement measurements with a fabry-perot cavity and a diode laser [J].Precis Eng,2001,25(4):321-335.
[8] Zhao Shuangshuang,Hou Changlun,Zhang Juan,et al.A high-resolution displacement sensor based on a grating interferometer with the phase modulation technique [J].Meas Sci Technol,2012,23(10):105102.
[9] Kohno T,Ozawa N,Miyamoto K,et al.High precision optical surface sensor [J].Appl Opt,1988,27(1):103-108.
[10] Margheri G,Mannoni A,Quercioli F.High-resolution angular and displacement sensing based on the excitation of surface plasma waves [J].Appl Opt,1997,36(19):4521-4525.
[11] Chiu M H,Shih B Y,Lai Chih W,et al.Small absolute distance measurement with nanometer resolution using geometrical optics principles and a SPR angular sensor [J].Sens Actuators A,2008,141(1):217-223.
[12] Lu Haifeng,Cao Zhuangqi,Li Honggen,et al.Study of ultrahigh-order modes in a symmetrical metal-claddign waveguide [J].Appl Phys Lett,2004,85(20):4579-4581.
[13] Chen Fan,Cao Zhuangqi,Shen Qishun,et al.Nanoscale displacement measurement in a variable-air-gap optical waveguide [J].Appl Phys Lett,2006,88(16):161111.
[14] Chen Fan,Cao Zhuangqi,Shen Qishun,et al.Picometer displacement sensing using the ultrahigh-order modes in a submillimeter scale optical waveguide [J].Opt Express,2005,13(25):10061-10065.
[15] Yu Tianyi,Li Honggen,Cao Zhuangqi,et al.Oscillating wave displacement sensor using the enhanced Goos-Hanchen effect in a symmetrical metal-cladding optical wavegudie [J].Opt Lett,2008,33(9):1001-1003.
[16] Chen Fan,Cao Zhuangqi,Shen Qishun,et al.Optical approach to angular displacement measurement based on attenuated total reflection [J].Appl Opt,2005,44(26):5393-5397.
[17] Gu J H,Chen G,Cao Zhuangqi,et al.An intensity measurement refractometer based on a symmetric metal-clad waveguide structure [J].J Phys D:Appl Phys,2008,41(18):185105.
[18] Xiao Pingping,Wang Xianping,Sun Jingjing,et al.Biosensor based on hollow-core metal-cladding waveguide [J].Sens Actuators A,2012,183:22-27.
[19] 桑明煌,余子星,李翠翠,等.相位调制型振荡场生化传感器的理论分析 [J].中国科学:G辑,2012,42(2):122-126.
[20] Sun Jingjing,Wang Xianping,Chen Yin,et al.Optical transduction of E Coli O157:H7 concentration by using the enhanced Goos-Hanchen shift [J].J Appl Phys,2012,112(8):83104.
[21] Li Honggen,Cao Zhuangqi,Lu Haifeng,et al.Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide [J].Appl Phys Lett,2003,83(14):2757-2759.
[22] Liu Xiangmin,Yang Qingfen,Qiao Zhi,et al.Physical origin of large positive and negative lateral optical beam shifts in prism-waveguide coupling system [J].Opt Comm,2010,283(13):2681-2685.
[23] Liao Shujen,Wang Shinn Fwu,Chiu Minghuang.A new method for measuring a small displacement by using the critical angle method and confocal technology [J].SPIE 2005,5635:211-218.
[24] Kabashin A V,Patskovsky S P,Grigorenko A N.Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing [J].Opt Express,2009,17:21191-21204.

相似文献/References:

[1]杨振,王贤平,桑明煌.基于双面金属包覆波导光强差分信号的波长锁定[J].江西师范大学学报(自然科学版),2014,(02):136.
 YANG Zhen,WANG Xian-ping,SANG Ming-huang.Utilizing the Intensity Difference Signal of the Reflected Beam from the Symmetrical Metal-Cladding Waveguide to Achieve the Locking of Wavelength[J].,2014,(02):136.

备注/Memo

备注/Memo:
国家自然科学基金(61265001);江西省教育厅科技课题(GJJ13237)
更新日期/Last Update: 1900-01-01