[1]徐少平,刘小平,李春泉,等.3次Hermite曲线逼近Conic曲线段有关性质[J].江西师范大学学报(自然科学版),2013,(02):199-205.
 XU Shao-ping,LIU Xiao-ping,LI Chun-quan,et al.Relevant Properties of Approximation to Conic Sections with Cubic Hermite Curves[J].,2013,(02):199-205.
点击复制

3次Hermite曲线逼近Conic曲线段有关性质()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年02期
页码:
199-205
栏目:
出版日期:
2013-03-01

文章信息/Info

Title:
Relevant Properties of Approximation to Conic Sections with Cubic Hermite Curves
作者:
徐少平;刘小平;李春泉;胡凌燕;杨晓辉
南昌大学信息工程学院,江西南昌,330031
Author(s):
XU Shao-ping;LIU Xiao-ping;LI Chun-quan;HU Ling-yan;YANG Xiao-hui
关键词:
数值分析Conic曲线段Hermite曲线逼近保形
Keywords:
numerical analysisConic sectionsHerimite curvesapproximationshape preserving
分类号:
TP391.9
文献标志码:
A
摘要:
利用Hermite多项式逼近法研究使用3次Hermite曲线逼近有理Conic曲线段的方法,推导3次Hermite曲线与Conic曲线段在端点处具有G2连续性、在中点具有G1连续性、保形几何属性需要满足的条件以及误差函数计算公式,通过多组不同类型的对比试验进一步证明了所述的关于用3次Hermite曲线逼近Conic曲线段有关性质的有效性.
Abstract:
By the Hermite polynomicals method,an approach to approximate Conic sections in the form of a rational Bezier curve with Hermite polynomial curves is studied.The property condition of constructed Hermite polynomial curve such as G-continuity with the Conic section at the end points and G-continuity at the parametric mid-point and shape-preserving has been proposed.Explicit error bound is also derived and discussed.The validity of the proposed method for approximating Conic sections with Hermite polynomial curves is further proved through multiples sets of different types of comparative tests.

参考文献/References:

[1] 孙家广,胡事民.计算机图形学基础教程 [M].2版.北京:清华大学出版社,2011.
[2] 曾芳玲,陈效群,冯玉瑜.二次曲线的多项式逼近 [J].计算机辅助设计与图形学学报,2003,15(5):547-541.
[3] 董辰世,陈志扬,汪国昭,等.曲面交线的B样条优化逼近 [J].计算机辅助设计与图形学学报,2004,16(4):450-453.
[4] 王小林,秦东晨,饶芳,等.四次Hermite 曲线的构造及其特性 [J].计算机辅助设计与图形学学报,2005,17(8):1700-1703.
[5] Floater M S.High order approximation of Conic sections by quadratic splines [J].Computer-Aided Geometric Design,1995,12(6):617-637.
[6] Floater M S.An mite approximation for Conic sections [J].Computer Aided Geometric Design,1997,14(2):135-151.
[7] Lian Fang.A rational quartic Bezier representation for Conics [J].Computer Aided Geometric Design,2002,19(2):297-312.
[8] 喻德生,师晶,曾接贤.一类3次代数曲线的光滑拼接及保凸性 [J].江西师范大学学报:自然科学版,2010,34(2):128-132.
[9] Ahn Y J,Kim Y S,Shin Y S.Approximation of circular arcs and offset curves by Bezier curves of high degree [J].Journal of Computational and Applied Mathematics,2004,167(2):405-416.
[10] 侯超钧,曾艳姗,吴东庆,等.全局连续的分段最小二乘曲线拟合方法 [J].重庆师范大学学报:自然科学版,2011,28(6):44-48.
[11] 蔡山,张浩,陈洪辉,等.基于最小二乘法的分段三次曲线拟合方法研究 [J].科学技术与工程,2007,7(3):352-355.
[12] Lian Fang.Cicular arc approximation by quintic polynomial curves [J].Computer-Aided Geometric Design,1998,15(8):843-861.
[13] Samuel R Buss.3D Computer graphics:a mathematical introduction with OpenGL [M].London:Cambridge University Press,2002.
[14] Patrikalakis N M.Appoximate conversion of rational splines [J].Computer Aided Geometric Design,1989,6(2):485-233.

备注/Memo

备注/Memo:
国家自然科学基金(61163023);江西省自然科学基金(20114BAB211024);江西省教改课题(JXJG12124)
更新日期/Last Update: 1900-01-01