[1]安蕾,肖丽鹏.一类2阶微分方程的解和小函数的关系[J].江西师范大学学报(自然科学版),2013,(03):233-235.
 AN Lei,XIAO Li-peng.The Relation between Solutions of a Class of Second Order Differential Equation with Functions of Small Growth[J].,2013,(03):233-235.
点击复制

一类2阶微分方程的解和小函数的关系()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年03期
页码:
233-235
栏目:
出版日期:
2013-05-01

文章信息/Info

Title:
The Relation between Solutions of a Class of Second Order Differential Equation with Functions of Small Growth
作者:
安蕾;肖丽鹏
江西师范大学数学与信息科学学院,江西南昌,330022
Author(s):
AN Lei;XIAO Li-peng
关键词:
微分方程收敛指数整函数
Keywords:
differential equationexponent of convergenceentire function
分类号:
O174.52
文献标志码:
A
摘要:
利用值分布理论研究了一类微分方程的解以及它们的1阶、2阶导数与小函数之间的关系,推广和完善了已有结果.
Abstract:
In this paper,solutions and the relation between their 1th and 2th derivatives with functions of a small growth of a class of second order linear differential equations are investigated by using the theory of value distribution.Hereby,the existing results are promoted and consummated.

参考文献/References:

[1] Hayman W K.Meromorphic function [M].Oxford:Clarendon Press,1964.
[2] 杨乐.值分布论及其新研究 [M].北京:科学出版社,1982.
[3] 陈宗煊,孙光镐.一类二阶微分方程的解和小函数的关系 [J].数学年刊A辑,2006,27(4):431-442.
[4] 陈裕先,陈宗煊.微分方程的解与小函数的关系 [J].江西师范大学学报:自然科学版,2002,26(1),15-20.
[5] 程涛,陈宗煊.非齐次线性微分方程解取小函数的点的收敛指数 [J].江西师范大学学报:自然科学版,2002,26(1),21-27.
[6] 刘慧芳.齐次线性微分方程解取小函数的点的收敛指数 [J].江西师范大学学报:自然科学版, 2003,27(2),118-121.
[7] 陈宗煊.微分方程f ″+ef '+Q(z)f=0的解的增长性 [J].中国科学A辑,2001,31(9):775-785.
[8] Cheng Tao,Kang Yueming.The growth of a class of linear differential equation [J].Journal of Fudan University,2006,45(10):610-617.
[9] Yang Congjun,Yi Hongxun.Uniqueness theory of meromorphic functions [M].New York:Kluwer Academic Publishers,2003.
[10] Chen Zongxuan.Zeros of meromorphic solutions of higher order linear differential equations [J].Analysis,1994,14(4):425-438.

相似文献/References:

[1]石磊,易才凤.一类高阶线性微分方程解的增长性[J].江西师范大学学报(自然科学版),2012,(03):230.
 SHI Lei,YI Cai-feng.The Growth of Solutions for a Class Higher Order Linear Differential Equations[J].,2012,(03):230.
[2]冯斌,刘慧芳,李延玲.一类高阶微分方程解的增长性[J].江西师范大学学报(自然科学版),2012,(04):335.
 FENG Bin,LIU Hui-fang,LI Yan-ling.On the Growth for Solutions of a Certain Higher Order Differential Equation[J].,2012,(03):335.
[3]杨碧珑,易才凤.一类亚纯系数高阶线性微分方程解的增长性[J].江西师范大学学报(自然科学版),2012,(05):477.
 YANG Bi-long,YI Cai-feng.The Growth for Solutions of a Class of Higher Order Linear Differential Equations with Meromorphic Coefficient[J].,2012,(03):477.
[4]李延玲,刘慧芳,冯斌.微分方程f′′+A_1(z)e~(az~n)f′+A_0(z)e~(bz~n)f=F(z)的复振荡[J].江西师范大学学报(自然科学版),2012,(06):579.
 LI Yan-ling,LIU Hui-fang,FENG Bin.On the Complex Oscillation of Differential Equations[J].,2012,(03):579.
[5]易才凤,刘旭强.方程f″+Af'+Bf=0的解在角域内的增长性及Borel方向[J].江西师范大学学报(自然科学版),2013,(01):1.
 YI Cai-feng,LIU Xu-qiang.The Growth and Borel Direction of Solutions for Differential Equation f" + Af' + Bf =0 in Angular Domains[J].,2013,(03):1.
[6]刘旭强,易才凤.关于2阶线性微分方程f″+Af'+Bf=0解的增长性[J].江西师范大学学报(自然科学版),2013,(02):171.
 LIU Xu-qiang,YI Cai-feng.On the Growth of Solutions of the Second Order Linear Differential Equation f"+Af'+Bf =0[J].,2013,(03):171.
[7]许淑娟,易才凤.高阶线性微分方程的解在角域内的增长性及Borel方向[J].江西师范大学学报(自然科学版),2013,(04):401.
 XU Shu-juan,YI Cai-feng.The Growth and Borel Direction of Solutions of Higher Order Linear Differential Equation in Angular Domains[J].,2013,(03):401.
[8]金瑾.单位圆内高阶齐次线性微分方程解与不动点的研究[J].江西师范大学学报(自然科学版),2013,(04):406.
 JIN Jin.The Research on Solutions of Higher Order Homogeneous Linear Differential Equations and Fixed Points in the Unit Disc[J].,2013,(03):406.
[9]胡军,易才凤.高阶非齐次线性微分方程解沿径向的振荡性质[J].江西师范大学学报(自然科学版),2014,(02):162.
 HU Jun,YI Cai-feng.The Radial Oscillation of Higher Order Non-Homogeneous Linear Differential Equation[J].,2014,(03):162.
[10]艾丽娟,易才凤.一类亚纯系数高阶线性微分方程解的增长性[J].江西师范大学学报(自然科学版),2014,(03):250.
 AI Li-juan,YI Cai-feng.The Growth for Solutions of a Class of Higher Order Linear Differential Equations with Meromorphic Coefficients[J].,2014,(03):250.

备注/Memo

备注/Memo:
国家自然科学基金(11126144,11171119);江西省自然科学基金(20132BAB211009);江西省教育厅青年科学基金(GJJ12207)
更新日期/Last Update: 1900-01-01