[1]王少敏,杨存基.用最小作用原理研究具有次线性的非线性项2阶系统[J].江西师范大学学报(自然科学版),2013,(03):236-239.
 WANG Shao-min,YANG Cun-ji.Research Second Order Systems with Sublinear Nonlinearity by the Least Action Principle[J].,2013,(03):236-239.
点击复制

用最小作用原理研究具有次线性的非线性项2阶系统()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年03期
页码:
236-239
栏目:
出版日期:
2013-05-01

文章信息/Info

Title:
Research Second Order Systems with Sublinear Nonlinearity by the Least Action Principle
作者:
王少敏;杨存基
大理学院数学与计算机学院,云南大理,671000
Author(s):
WANG Shao-min;YANG Cun-ji
关键词:
周期解最小作用原理2阶系统
Keywords:
periodic solutionsthe least action principlesecond order systems
分类号:
O177.25
文献标志码:
A
摘要:
利用最小作用原理研究2阶系统ü(t)-A(t)u(t)=▽F(t,u(t)),a.e.t∈[0,T]u(0)-u(T)=(u)(0)-(u)(T)=0,的周期解的存在性,在非线性项是次线性及A(t)是1个连续N阶对称矩阵的条件下得到了该系统的2个新的存在性定理.
Abstract:
The existence of periodic solutions of the following second order systems {ü(t)-A(t)u(t)= 䥺SymbolQC@ F(t,u(t)), u(0)-u(T)=u(0)-u(T)=0,a.e.t∈[0,T] is studied by the least action principle.When the nonlinearity is sublinear and A(t) is a continuous symmetric matrix of N is a continuous symmetric matrix of der,two new existence theorems of this system are obtained.

参考文献/References:

[1] Berger M S,Schechter M.On the solvability of semilinear gradient operator equations [J].Adv Math,1977,25(2):97-132.
[2] Mawhin J,Willem M.Critical point theory and Hamiltonian systems [M].Berlin,New York:Springer-Verlag,1989.
[3] Tang Chunlei.Periodic solutions for nonautonomous second order systems with sublinear nonlinearity [J].Proc Amer Math Soc,1998,126(11):3263-3270.
[4] Wu Xingping,Tang Chunlei.Periodic solutions of a class of non-autonomous second-order systems [J].J Math Anal Appl,1999,236(2):227-235.
[5] Ma Jian,Tang Chunlei.Periodic solutions for some nonautonomous second-order systems [J].J Math Anal Appl,2002,275(2):482-494.
[6] Tang Chunlei.Periodic solutions of non-autonomous second-order systems with γ-quasisubadditive potential [J].J Math Anal Appl,1995,189(3):671-675.
[7]Tang Chunlei.Periodic solutions of non-autonomous second order systems [J].J Math Anal Appl,1996,202(2):465-469.
[8] Tang Chunlei,Wu Xingping.Periodic solutions for second order systems with not uniformly coercive potential [J].J Math Anal Appl,2001,259(2):386-397.
[9] Mawhin J.Semi-coercive monotone variational problems [J].Acad Roy Belg Bull Cl Sci,1987,73(5):118-130.
[10] 李芳,张清业.一类超2次2阶哈密顿系统的无穷多周期解 [J].江西师范大学学报:自然科学版,2012,36(6):589-593.
[11] 张申贵.一类非自治二阶系统的多重周期解 [J].山东大学学报:自然科学版,2011,46(11):64-69.
[12] 张申贵.一类非自治二阶Hamilton系统周期解的存在性 [J].河北师范大学学报:自然科学版,2012,36(2):115-120.
[13] Tang Chunlei,Wu Xingping.Periodic solutions for a class of non-autonomous subquadratic second order Hamiltonian systems [J].J Math Anal Appl,2002,275(2):870-882.

相似文献/References:

[1]汪小明,谢新华.一类具偏差变元的2阶微分方程周期解问题[J].江西师范大学学报(自然科学版),2012,(02):168.
 WANG Xiao-ming,XIE Xin-hua.The Periodic Solution for a Kind of Second Order Differential Equations with Deviating Arguments[J].,2012,(03):168.
[2]林文贤.关于一类具偏差变元的Duffing型方程的周期解注记[J].江西师范大学学报(自然科学版),2012,(05):499.
 LIN Wen-xian.The Notes on Periodic Solution for a Kind of Duffing Equation with Deviating Arguments[J].,2012,(03):499.
[3]李芳,张清业.一类超2次2阶哈密顿系统的无穷多周期解[J].江西师范大学学报(自然科学版),2012,(06):589.
 LI Fang,ZHANG Qing-ye.Infinitely Many Periodic Solutions for a Class of Superquadratic Second Order Hamiltonian Systems[J].,2012,(03):589.
[4]万树园,王智勇.非自治(q,p)-Laplace方程组周期解的存在性[J].江西师范大学学报(自然科学版),2016,40(05):511.
 WAN Shuyuan,WANG Zhiyong.The Existence of Periodic Solution for Nonautonomous Equations with (q,p)-Laplacian[J].,2016,40(03):511.

备注/Memo

备注/Memo:
国家自然科学基金(11261002);云南省科技厅应用基础课题(2011FZ167);云南省教育厅科学研究基金(09Y0367)
更新日期/Last Update: 1900-01-01