[1]于凤英,杨志豪,林鸿飞.基于拓扑和生物特征的权重网络中络合物抽取[J].江西师范大学学报(自然科学版),2013,(03):273-278.
 YU Feng-ying,YANG Zhi-hao,LIN Hong-fei.Complex Extraction from the Weighted Network Based on Topological and Biological Characteristics[J].,2013,(03):273-278.
点击复制

基于拓扑和生物特征的权重网络中络合物抽取()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年03期
页码:
273-278
栏目:
出版日期:
2013-05-01

文章信息/Info

Title:
Complex Extraction from the Weighted Network Based on Topological and Biological Characteristics
作者:
于凤英;杨志豪;林鸿飞
大连理工大学计算机科学与技术学院,辽宁大连,116024
Author(s):
YU Feng-ying;YANG Zhi-hao;LIN Hong-fei
关键词:
权重网络权重设置蛋白质关系蛋白质络合物监督学习
Keywords:
weighted networkweight settingprotein interactionprotein complexsupervised learning
分类号:
TP391
文献标志码:
A
摘要:
蛋白质关系网络的权重设置对蛋白质络合物的抽取有着较大的影响.综合考虑蛋白质关系网络的拓扑结构特征和生物信息特征,提出一种新的权重设置策略,并向原有蛋白质关系网络中添加高可信度关系.基于修正后的蛋白质关系网络,用监督学习方法抽取蛋白质络合物,在DIP数据集上,F值达到0.5705.
Abstract:
The weight setting of protein interaction network has a great effect on protein complex identification.A better strategy which considers both topological characteristics and biological characteristics of protein interaction network has been provided.Furthermore,some credible interactions have been added into the original network.Then,the updated protein interaction network has been used for complex identification based on a supervised method.F-score reached 0.570 5 in the DIP dataset.

参考文献/References:

[1] Deane C M,Salwiński ,Xenarios I,et al.Protein interactions:two methods for assessment of the reliability of high throughput observations [J].Molecular & Cellular Proteomics,2002,1(5):349-356.
[2] Srihari S,Ning K,Leong H W.Refining Markov clustering for protein complex prediction by incorporating core-attachment structure [J].Genome Informatics Series,2009,23(1):159-168.
[3] Brun C,Chevenet F,Martin D,et al.Functional classification of proteins for the prediction of cellular function from a protein-protein interaction network [J].Genome biology,2004,5(1):6.
[4] Chua Honnian,Sung Wingkin,Wong Limsoon.Exploiting indirect neighbours and topological weight to predict protein function from protein-protein interactions [J].Bioinformatics,2006,22(13):1623-1630.
[5] Liu Guimei,Wong Limsoon,Chua Honnian.Complex discovery from weighted PPI networks [J].Bioinformatics,2009,25(15):1891-1897.
[6] 唐楠,杨志豪,吴佳金,等.基于监督学习的蛋白质络合物抽取方法 [J].广西师范大学学报:自然科学版,2011,29(2):174-179.
[7] Wang Jian,Xie Dong,Lin Hongfei,et al.Identifying protein complexes from PPI networks using go semantic similarity[EB/OL].
[2012-10-13].http:∥ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6120506&tag=1.
[8] Xenarios I,Salwinski L,Duan X J,et al.DIP,the database of interacting proteins:a research tool for studying cellular networks of protein interactions [J].Nucleic acids research,2002,30(1):303-305.
[9] Harris M,Clark J,Ireland A,et al.The gene ontology(GO)database and informatics resource [J].Nucleic acids research,2004,32:D258-D261.
[10] Wu Min,Li Xiaoli,Kwoh C K,et al.A core-attachment based method to detect protein complexes in PPI networks [J].BMC bioinformatics,2009,10(1):169.
[11] Cossock D,Zhang Tong.Subset ranking using regression [EB/OL].
[2012-10-16].http:∥link.springer.com/chapter/10.1007%2F11776420_44#page-1.
[12] Tomita E,Tanaka A,Takahashi H.The worst-case time complexity for generating all maximal cliques and computational experiments [J].Theoretical Computer Science,2006,363(1):28-42.
[13] Brohee S,Van Helden J.Evaluation of clustering algorithms for protein-protein interaction networks [J].BMC bioinformatics,2006,7(1):488.
[14] Krogan N J,Cagney G,Yu H,et al.Global landscape of protein complexes in the yeast saccharomyces cerevisiae [J].Nature,2006,440:637-643.
[15] Gavin A C,Aloy P,Grandi P,et al.Proteome survey reveals modularity of the yeast cell machinery [J].Nature,2006,440:631-636.
[16] Bader G,Hogue C.An automated method for finding molecular complexes in large protein interaction networks [J].BMC bioinformatics,2003,4(1):2.
[17] 何文译,林鸿飞,杨亮.基于群体智慧的电影排序模型 [J].江西师范大学学报:自然科学版,2013,37(2):136-141.
[18] 任巨伟,杨亮,林鸿飞.情感图式构造及其在文体情感计算中的应用 [J].江西师范大学学报:自然科学版,2013,37(2):130-135.

备注/Memo

备注/Memo:
国家自然科学基金(61272373,61070098,60973068);国家"863"计划(2006AA01Z151);中央高校基本科研业务费专项基金(DUT10JS09)
更新日期/Last Update: 1900-01-01