[1]胡鹏,马善钧.压缩真空态通过分束器后的纠缠和统计性质[J].江西师范大学学报(自然科学版),2013,(04):359-366.
 HU Peng,MA Shan-jun.Entanglement and Statistical Properties of Squeezed Vacuum State after an Beam Splitter[J].,2013,(04):359-366.
点击复制

压缩真空态通过分束器后的纠缠和统计性质()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年04期
页码:
359-366
栏目:
出版日期:
2013-09-01

文章信息/Info

Title:
Entanglement and Statistical Properties of Squeezed Vacuum State after an Beam Splitter
作者:
胡鹏;马善钧
江西师范大学物理与通信电子学院,江西南昌,330022
Author(s):
HU Peng;MA Shan-jun
关键词:
压缩真空态分束器纠缠Wigner函数
Keywords:
squeezed vacuum statebeam splitterentanglementWigner function
分类号:
O431
文献标志码:
A
摘要:
基于相空间方法,研究了压缩真空态通过分束器后的纠缠和统计性质.采用对数负值的判据,研究输出光场的纠缠属性.结果表明:对称平衡分束器输出光场纠缠量最大,且纠缠量随压缩参数的增大而增大.另外,还通过Wigner-Weyl规则,研究单端输出光场的一些统计性质.结果发现:调节输入光场和分束器参数,输出光场展现不同的非经典性.
Abstract:
Based on phase space method,we study entanglement and statistical properties of squeezed vacuum state after an beam splitter.We adopt the criterion of logarithmic negativity to study the entanglement properties of the output light field.The results show that the maximum entanglement is found for the symmetrical beam splitter and the amount of entanglement increases with the squeezing parameter.In addition,we also use the Wigner-Weyl rules to study the statistical properties of light field in one of the output ports.It is found that the nonclassicality of the output field will change by adjusting the relative parameter of the input light field and the beam splitter.

参考文献/References:

[1] Dodonov V V.Nonclassical states in quantum optics:a squeezed review of the first 75 years [J].J Opt B:Quantum Semiclass Opt,2002,4:R1-R33.
[2] Loudon R,Knight P L.Squeezed light [J].J Mod Opt,1987,34:709-759.
[3] Walls D F.Squeezed states of light [J].Nature,1983,306:141-146.
[4] Collett M J,Walls D F.Squeezing spectra for nonlinear optical systems [J].Phys Rev A,1985,32:2887-2892.
[5] Lakshmi P A,Agarwal G S.Effect of cooperativity on squeezing in resonance fluorescence optics communications [J].Phys Rev A,1984,29:2260-2262.
[6] Milburn G J,Braunstein S L.Quantum teleportation with squeezed vacuum states [J].Phys Rev A,1999,60:937-942.
[7] Zhang Jing,Peng Kunchi.Quantum teleportation and dense coding by means of bright amplitude-squeezed light and direct measurement of a Bell state [J].Phys Rev A,2000,62:64302.
[8] 宋同强.利用双模压缩真空态实现量子态的远程传输 [J].物理学报,2004,53:3358-3362.
[9] Ban M.Quantum dense coding via a two-mode squeezed vacuum state [J].J Opt B:Quantum Semiclass Opt,1999(1):L9-L11.
[10] Braunstein S L,Loock P V.Quantum information with continuous variables [J].Rev Mod Phys,2005,77:513-577.
[11] Braunstein S L,Kimble H J.Dense coding for continuous variables [J].Phys Rev A,2000,61:42302.
[12] Tyc T,Sander B C.How to share a continuous-variable quantum secret by optical interferometry [J].Phys Rev A,2002,65:42310.
[13] Kim M S,Son W,Buzek V,et al.Entanglement by a beam splitter:nonclassicality as a prerequisite for entanglement [J].Phys Rev A,2002,65:32323.
[14] Wang Xian bin.A Theorem for the beam-splitter entangler [J].Phys Rev A,2002,66(2):24303.
[15] Springer S C,Lee J,Bellini M,et al.Conditions for factorizable output from a beam splitter [J].Phys Rev A,2009,79:62303.
[16] Tahira R,Ikram M,Nha H,Zubairy M S.Entanglement of Gaussian states using a beam splitter [J].Phys Rev A,2009,79:23816.
[17] Werner R F,Wolf M M.Bound entangled Gaussian states [J].Phys Rev Lett,2001,86:3658-3661.
[18] Giedke G,Kraus B,Lewenstein M,et al Entanglement criteria for all bipartite Gaussian states [J].Phys Rev Lett,2001,87:167904.
[19] Schleich W P.Quantum optics in Phase space [M].Berlin:Verlag,2001.
[20] Suda M.Quantum interferometry in phase space [M].Berlin:Springer-Verlag,2006.
[21] Ekert A K,Knight P L.Relationship between semiclassical and quantum-mechanical input-output theories of optical response [J].Phys Rev A,1991,43:3934-3938.
[22] Wigner E P.On the quantum correction for thermodynamic equilibrium [J].Phys Rev,1932,40:749-759.
[23] Hillary M,O'Connell R F,Scully M O,et al.Distribution functions in physics [J].Fundamentals Phys Rep,1984,106:121-167.
[24] Xu Xuexiang,Jia Fang,Hu Liyun,et al.Quantum interference between an arbitrary-photon Fock state and a coherent state [J].J Mod Opt,2012,59:1624-1633.
[25] 徐学翔,张英孔,张浩亮,等.N00N态的Wigner函数及N00N态作为输入的量子干涉 [J].物理学报,2013,62:114204.
[26] Fan H Y,Zaidi H R.Application of IWOP technique to the generalized Weyl correspondence [J].Phys Lett A,1987,124:303-307.
[27] 张延亮,周清平,周方.相干压缩态通过分束器的纠缠性质 [J].科技信息,2010,19:13.
[28] Xu Xuexiang,Hu Liyun,Fan Hongyi.Fluctuation of mesoscopic RLC circuit at photon-subtracted and photon-added thermo vacuum states with finite temperature [J].Mod Phys Lett B,2011,25:31-39.
[29] Lee C T.Nonclassical photon statistics of two-mode squeezed states [J].Phys Rev A,1990,42:1608-1616.
[30] 邓阿丽,夏云杰.利用分束器产生的一类非经典光场 [J].量子光学学报,2004,B09:39.

备注/Memo

备注/Memo:
江西省自然科学基金(20114BAB202004);江西省教育厅科技课题(GJJ12171)
更新日期/Last Update: 1900-01-01