[1]金瑾.单位圆内高阶齐次线性微分方程解与不动点的研究[J].江西师范大学学报(自然科学版),2013,(04):406-410.
 JIN Jin.The Research on Solutions of Higher Order Homogeneous Linear Differential Equations and Fixed Points in the Unit Disc[J].,2013,(04):406-410.
点击复制

单位圆内高阶齐次线性微分方程解与不动点的研究()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年04期
页码:
406-410
栏目:
出版日期:
2013-09-01

文章信息/Info

Title:
The Research on Solutions of Higher Order Homogeneous Linear Differential Equations and Fixed Points in the Unit Disc
作者:
金瑾
毕节学院数学系,贵州毕节,551700
Author(s):
JIN Jin
关键词:
单位圆高阶线性微分方程不动点解析函数收敛指数
Keywords:
unit dischigher order linear differential equationsfixed pointsanalytic functionexponent of convergence
分类号:
O174.52
文献标志码:
A
摘要:
讨论了系数是单位圆内的解析函数的高阶齐次线性微分方程解及解的1次导数和2次导数与其不动点之间的关系,并获得了它们之间的精确估计.
Abstract:
The relation between solutions of second order homogeneous linear differential equations whose coefficients are analytic functions in the unit disc and their fixed points has been investigated,and the precise estimate is obtained.

参考文献/References:

[1] Heittokangas J.On complex differential equations in the unit disc [J].Ann Acad Sci Fenn Math Diss,2000,122:1-54.
[2] Tsuji M.Potential theory in modern function theory [M].2nd ed.New York:Chelsea Pub Co,1975.
[3] 陈宗煊.一类单位圆内微分方程解的性质 [J].江西师范大学学报:自然科学版,2002,26(3):189-190,199.
[4] 王丽,陈宗煊.单位圆内高阶微分方程解的一些结果 [J].华南师范大学学报:自然科学版,2007,39(3):8-13.
[5] Heittokangas J,Korhonen R,Rättyä J.Growth estimates for solutions of linear complex differential equations [J].Ann Acad Sci Femm Math,2004,29(1):233-246.
[6] 甘会林,向子贵.单位圆内二阶线性微分方程的解与小函数的关系 [J].数学的实践与认识,2010,40(8):191-195.
[7] 曹廷彬,仪洪勋.关于单位圆内解析系数的二阶线性微分方程的复振荡 [J].数学年刊,2007,28A(5):719-732.
[8] Chen Zongxuan,Shon K H.The growth of solutions of differential equations with coefficients of small growth in the disc [J].J Math Anal Appl,2004,297(1):285-304.
[9] Cao Tingbin,Yi Hongxun.The growth of solutions of linear differential equations with coefficients of iterated order in the unit disc [J].Math Anal Appl,2006,319(1):278-294.
[10] 李叶舟.单位圆盘上二阶微分方程解的增长性 [J].纯粹数学与应用数学,2002,18(4):295-300.
[11] 曹廷彬,仪洪勋.关于单位圆内解析系数的线性微分方程的复振荡理论 [J].数学物理学报,2008,28A(6):1046-1057.
[12] 陈宗煊,孙光镐.一类二阶微分方程的解和小函数的关系 [J].数学年刊,2006,27A(4):431-442.
[13] 金瑾.一类高阶齐次微分方程解与其小函数的增长性 [J].高校应用数学学报,2013,28(1):43-50.
[14] 金瑾.关于一类高阶齐次线性微分方程解的增长性 [J].中山大学学报:自然科学版,2013,52(1):51-54.
[15] 金瑾.高阶复微分方程解的超级的角域分布 [J].数学的实践与认识,2008,38(12):178-187.
[16] 金瑾,石宁生.一类微分方程的解及其解的导数与不动点的关系 [J].数学的实践与认识,2011,41(22):185-190.
[17] 金瑾.一类高阶齐次线性微分方程亚纯解的超级及其不动点 [J].华中师范大学报:自然科学版,2011,45(1):18-22.
[18] 金瑾.高阶线性微分方程解与其小函数的关系 [J].理论数学,2012,2(3):156-163.

相似文献/References:

[1]龙见仁,伍鹏程.单位圆上高阶线性微分方程解的性质[J].江西师范大学学报(自然科学版),2012,(02):147.
 LONG Jian-ren,WU Peng-cheng.On the Properities of Solutions for Higher Order Linear Differenrial Equations in the Unit Disc[J].,2012,(04):147.
[2]肖丽鹏,李明星.单位圆内非齐次线性微分方程的振荡解[J].江西师范大学学报(自然科学版),2013,(02):166.
 XIAO Li-peng,LI Ming-xing.Oscillatory Solutions of Nonhomogeneous Linear Differential Equation in the Unit Disc[J].,2013,(04):166.
[3]涂金,黄海霞,徐洪焱,等.单位圆内亚纯函数与解析函数的级与型[J].江西师范大学学报(自然科学版),2013,(05):449.
 TU Jin,HUANG Hai-xia,XU Hong-yan,et al.The Order and Type of Meromorphic Functions and Analytic Functions in the Unit Disc[J].,2013,(04):449.
[4]占美龙,郑秀敏.关于单位圆内亚纯系数线性微分方程解的微分多项式的值分布[J].江西师范大学学报(自然科学版),2014,(05):506.
 ZHAN Mei-long,ZHENG Xiu-min.The Value Distribution of Differential Polynomials Generated by Solutions of Linear Differential Equations with Meromorphic Coefficients in the Unit Disc[J].,2014,(04):506.
[5]涂金,魏竞斯,徐洪焱.单位圆内[ p,q]-φ(r)级解析函数与亚纯函数的级与型[J].江西师范大学学报(自然科学版),2015,(02):207.
 TU Jin,WEI Jingsi,XU Hongyan.The Order and Type of Meromorphic Functions and Analytic Functions of [p,q]-φ(r)Order in the Unit Disc[J].,2015,(04):207.

备注/Memo

备注/Memo:
贵州省科学技术基金(2010GZ43286,2012GZ10526);贵州省毕节地区科研基金(
[2011]02)
更新日期/Last Update: 1900-01-01