[1]丁树良,罗芬.由偏序关系的可达阵导出Hasse图的有效算法——兼谈其在认知诊断中的作用[J].江西师范大学学报(自然科学版),2013,(05):441-444.
 DING Shu-liang,LUO Fen.An Efficient Algorithm of Deriving Hasse Diagram from the Reachibility Matrix of a Partial Order Relation——Together with Its Application to Cognitive Diagnosis[J].,2013,(05):441-444.
点击复制

由偏序关系的可达阵导出Hasse图的有效算法——兼谈其在认知诊断中的作用()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年05期
页码:
441-444
栏目:
出版日期:
2013-10-31

文章信息/Info

Title:
An Efficient Algorithm of Deriving Hasse Diagram from the Reachibility Matrix of a Partial Order Relation——Together with Its Application to Cognitive Diagnosis
作者:
丁树良;罗芬
江西师范大学计算机信息工程学院,江西南昌,330022
Author(s):
DING Shu-liang;LUO Fen
关键词:
偏序关系可达阵Hasse图认知诊断
Keywords:
partial order relationreachibility matrixHasse diagramcognitive diagnosis
分类号:
B841.7;TP301.6
文献标志码:
A
摘要:
假设0-1矩阵Q的行表示属性,对矩阵Q采用行逐对比较方法导出表示属性层级关系的Hasse图.然而,这个Hasse图和由可达矩阵R导出的Hasse图可能不一致.证明了包含R的Q阵的行逐对比较的方法与R导出的Hasse图是一致的,由此得出由偏序关系的可达矩阵导出Hasse图的一个有效算法,并讨论其在认知诊断中的应用.
Abstract:
Suppose that the rows of a 0-1 matrix Q represent the attributes,the attribute hierarchy from the matrix,Q,could be derived through comparing pair of the rows of the Q matrix.But the hierarchy derived from Q matrix may not be coincidental with that derived from the reachibility matrix R.When the matrix R is included in Q matrix,the coincidence of the two hierarchies derived from Q and R must be kept.Application of the method to the reachibility matrix corresponding to the partial order relation,an efficient algorithm of deriving the Hasse diagram is proposed,and its application to cognitive diagnosis is discussed.

参考文献/References:

[1] 丁树良,罗芬.求偏序关系Hasse图的算法 [J].江西师范大学学报:自然科学版,2005,29(2):150-152.
[2] Ding Shuliang,Luo Fen,Cai Yan,et al.Complement to Tatsuoka's Q matrix theory [C].Tokyo:Universal Academy Press,2008:417-424.
[3] 杨淑群,丁树良.有效对象的判定理论与方法 [J].江西师范大学学报:自然科学版,2011,35(1):1-4.
[4] Tatsuoka K K.Item construction and psychometric models appropriate for constructed responses [R].Princeton:Educational Testing Services,1991.
[5] Tatsuoka K K.Item construction and psychometric models appropriate for constructed responses [C].Hillsdale:Lawrence Erbaum Associates,1993:107-134.
[6] Tatsuoka K K.Architecture of knowledge structures and cognitive diagnosis:a statistical pattern classification approach [C].Erlbaum:Hillsdale,1995:327-359.
[7] Tatsuoka K K.Cognitive assessment:an introduction to the rule space method [M].New York:Taylor & Francis Group,2009.
[8] 涂冬波,蔡艳,丁树良.认知诊断理论、方法与应用 [M].北京:北京师范大学出版社,2012:128-147.
[9] 丁树良,祝玉芳,林海菁,等.Tatsuoka Q矩阵理论的修正 [J].心理学报,2009,41(2):175-181.
[10] 杨淑群,蔡声镇,丁树良,等.求解简化Q矩阵的扩张算法 [J].兰州大学学报:自然科学版,2008,44(3):87-91,96.
[11] 丁树良,毛萌萌,汪文义,等.教育认知诊断测验与认知模型一致性的评估 [J].心理学报,2012,44(11):1535-1546.
[12] 丁树良,杨淑群,汪文义.可达矩阵在认知诊断测验编制中的重要作用 [J].江西师范大学学报:自然科学版,2010,34(5):490-495.
[13] Ganter B,Wille R.形式概念分析 [M].马垣,张学东,迟呈英,等译.北京:科学出版社,2007.

相似文献/References:

[1]甘朝红,汪文义,丁树良.项目属性标错时可达阵补救作用的研究[J].江西师范大学学报(自然科学版),2014,(06):600.
 GAN Chao-hong,WANG Wen-yi,DING Shu-liang.The Research on the Remedial Effects of Reachability Matrix When Identifying an Item Attribute Incorrectly[J].,2014,(05):600.

备注/Memo

备注/Memo:
国家自然科学基金(30860084,31160203,31100756,31360237,31300876);国家社会科学基金(12BYY055);江西省教育厅科技计划(GJJ13207,GJJ13226,GJJ13227,GJJ13208,GJJ13209)
更新日期/Last Update: 1900-01-01