[1]杨宗信,丁静.圆弧多边形的单叶性内径[J].江西师范大学学报(自然科学版),2013,(05):457-461.
 YANG Zong-xin,DING Jing.On the Inner Radius of Univalency for Curvilinera Polygons[J].,2013,(05):457-461.
点击复制

圆弧多边形的单叶性内径()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年05期
页码:
457-461
栏目:
出版日期:
2013-10-31

文章信息/Info

Title:
On the Inner Radius of Univalency for Curvilinera Polygons
作者:
杨宗信;丁静
江西师范大学数学与信息科学学院,江西南昌,330022
Author(s):
YANG Zong-xin;DING Jing
关键词:
Schwarz导数单叶性内径圆弧多边形
Keywords:
Schwarzian derivativethe inner radius of univalencycurvilinear polygon
分类号:
O174.51
文献标志码:
A
摘要:
根据圆弧多边形区域的Schwarz-Christoffel变换的构造过程中Schwarz导数的作用,得到了圆弧三角形和正圆弧多边形区域的单叶性内径,证明了它们都是Nehari圆.
Abstract:
By using the idea in constructing the Schwarz-Christoffel formular,the inner radius of univalency for curvilinear polygons such as curvilinear triangles and regular circular polygons is studied.And explicit value of those domains is obtained.The results suggest that those domains are all Nehari disk.

参考文献/References:

[1] Ahlfors L V,Weill G.A uniqueness theorem for Beltrami equations [J].Proc Amer Math Soc,1962,13(6):975-978.
[2] Ahlfors L V.Quasiconformal reflections [J].Acta Math,1963,109(1):291-301.
[3] Gehring F W.Characteristic properties of quasidisks [D].Montreal:Les Presses de L'Universite de Montreal,1982.
[4] Nehari Z.The Schwarzian derivative and schlicht functions [J].Bull Amer Math Soc,1949,55(6):545-551.
[5] Hille E.Remarks on a paper by Zeev Nehari [J].Bull Amer Math Soc,1949,55(6):552-553.
[6] Lehtinen M.On the inner radius of univalency for non-circular domains [J].Ann Acad Sci Fenn Ser A I Math,1980,5(1):45-47.
[7] Lehto O.Univalent functions and teichmuller spaces [M].New York:Springer-Varlag,1987.
[8] Lehto O.Remarks on Nehari's theorem about the Schwarzian derivative and schlicht functions [J].Journal d'Analyse Math,1979,36(1):184-190.
[9] Calvis D.The inner radius of univalence of normal circular triangles and regular polygons [J].Complex Variables,1985,4(3):295-304.
[10] Wieren L M.Univalence criteria for classes of rectangles and equiangular hexagons [J].Ann Acad Sci Fenn Math,1997,22(2):407-424.
[11] 朱华成.菱形的单叶性内径 [J].数学年刊,2001,22A(1):77-80.
[12] 王磊,杨宗信.共形映射与John圆 [J].江西师范大学学报:自然科学版,2010,34(1):37-41.
[13] 刘新斌,杨宗信.平行四边形及等腰梯形的单叶性内径 [J].江西师范大学学报:自然科学版,2010,34(3):267-270.
[14] Nehari Z.Conformal mapping [M].New York:Dover Publications Inc,1952.
[15] 戈鲁辛.复变函数的几何理论 [J].陈建功,译.北京:科学出版社,1956.
[16] Ma W,Minda D.Hyperbolically convex functions II [J].Ann Polon Math,1999,71(3):273-285.
[17] Mejia D,Pommerenke Ch.On hyperbolically convex functions [J].The Journal of Geometric Analysis,2000,10(2):365-378.
[18] Hille E.Analytic function theory:II [M].New York:Chelsea Publishing Company,1962.

相似文献/References:

[1]罗贤,杨宗信.正则区域的对数导数单叶性内径[J].江西师范大学学报(自然科学版),2013,(02):179.
 LUO Xian,YANG Zong-xin.The Inner Radius of Univalence by Pre-Schwarzian Derivative of Regulated Domain[J].,2013,(05):179.

备注/Memo

备注/Memo:
国家自然科学基金(11071063,11261022);江西省教育厅科研(GJJ12175)
更新日期/Last Update: 1900-01-01