[1]高晔,张庆祥,邢苗.半局部半(E,F)-凸函数及其性质[J].江西师范大学学报(自然科学版),2014,(01):58-61.
 GAO Ye,ZHANG Qing-xiang,XING Miao.Semilocal Semi(E,F)-Convex Function and It's Properties[J].,2014,(01):58-61.
点击复制

半局部半(E,F)-凸函数及其性质()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2014年01期
页码:
58-61
栏目:
出版日期:
2014-02-28

文章信息/Info

Title:
Semilocal Semi(E,F)-Convex Function and It's Properties
作者:
高晔;张庆祥;邢苗
延安大学数学与计算机科学学院,陕西延安,716000
Author(s):
GAO Ye;ZHANG Qing-xiang;XING Miao
关键词:
局部星形(EF)-凸集半局部半(EF)-凸函数半局部半(EF)-拟凸函数半局部半(EF)-伪凸函数
Keywords:
local starshaped (EF)-convex setsemilocal semi (EF)-convex functionsemilocal semi (EF)-quasi convex functionsemilocal semi(EF)-pseudo convex function
分类号:
O174.13
文献标志码:
A
摘要:
基于局部星形凸集、半(E,F)-凸函数和半局部凸函数的定义,给出了一些新的广义凸函数的概念,即半局部半(E,F)-凸函数、半局部半(E,F)-伪凸函数、半局部半(E,F)-拟凸函数、半局部半(E,F)-严格凸函数和半局部半(E,F)-强凸函数,进而研究了这些广义凸函数的性质.
Abstract:
The definitions of some generalized convex functions are presented by using the concepts of local starshaped set,semilocal convex function and semi(E,F)-convex function,which are semilocal semi(E,F)-convex function,semilocal semi(E,F)-quasi convex function,semilocal semi(E,F)-pseudo convex function,semilocal semi(E,F)-strict convex function,and semilocal semi(E,F)-strong convex function.The properties of these generalized convex functions are researched.

参考文献/References:

[1] Youness E A.E-convex sets,E-convex functions and E-convex programming[J].Journal of Optimization Theory and Applications,1999,102(2):439-450.
[2] Yang X M.Technical note on E-convex set,E-convex functions,and E-convex programming[J].Journal of Optimization Theory and Applications,2001,109(3):699-704.
[3] Jian Jinbao.Incorrect results for E-convex functions and E-convex programming [J].Joural of Mathematical Research and Expostion,2003,23(3):461–466.
[4] 覃义,简金宝.关于E-凸函数及E凸规划几个错误结论的修正 [J].数学杂志,2006,26(2):177–180.
[5] Weir T.Programming with semilocally convex functions [J].J Math Anal Appl,1992,168(1):1-12.
[6] Ewing G M.Sufficient conditions for global minima of suitably convex functions from variational and control theory [J].SIAM Rev,1977,19:202-220.
[7] Jian Jinbao,Pan H Q,Zeng H J.Semilocally prequasi-invex functions and characterizations [J].Journal of Industrial and Management Optimization,2007,3(3):503-517.
[8] Hu.Q.J,Jian.J.B,Zheng.H.Y.etal.Semilocal E-convexity and semilocal E-convex programming[J].Bulletin of Australian Mathematical Society,2007,75(1):59-74.
[9] 晁绵涛,简金宝,梁东颖.次b凸函数和次b凸规划 [J].运筹学学报,2012,16(2):1-8
[10] Jian Jinbao.On(E,F)generalized convexity [J].International Joural of Mathematical Sciences,2009(1):121-132.
[11] Jian Jinbao,Hu Q Y,Ma P F,et al.On Properties of Quasi-Semi-(E,F)-Convex Functions and Quasi-Semi-(E,F)-Convex Programming [J].Operations Research Transactions.2012,16(1):49-55.
[12] 陆敏慧,于宪伟.(E,F)凸集,(E,F)凸函数的一些新性质 [J].渤海大学学报:自然科学版,2010,31(1):52-54.
[13] Jian Jinbao,Hu Q J,Tang C M,et al.Semi-(E,F)-convex functions and semi-(E,F)-convex programming [J].International Journal of Pure and Applied Mathematics,2004,14(3):439-454.
[14] 曾友芳,简金宝,晁绵涛.B-半-(E,F)-凸函数和规划 [J].运筹学学报,2009,13(2):68-82.
[15] Tang H W.Fixed point algorithms and its application to nondifferentiable Programming Approximization.Optimization and computing:Theory and Application[M].Horth-Holland:Elsevier Science Publishers B V,1990,291-294.

备注/Memo

备注/Memo:
陕西省教育厅专项科研基金(06JK152);陕西高水平大学建设专项资金(2012SXTS07);延安大学重点科研(YDZ2012-04)
更新日期/Last Update: 1900-01-01