[1]占燕燕,肖丽鹏.2阶齐次微分方程的次正规解[J].江西师范大学学报(自然科学版),2014,(02):158-161.
 ZHAN Yan-yan,XIAO Li-peng.The Subnormal Solutions of Second Order Homogeneous Differential Equations[J].,2014,(02):158-161.
点击复制

2阶齐次微分方程的次正规解()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2014年02期
页码:
158-161
栏目:
出版日期:
2014-04-30

文章信息/Info

Title:
The Subnormal Solutions of Second Order Homogeneous Differential Equations
作者:
占燕燕;肖丽鹏
江西师范大学数学与信息科学学院,江西南昌,330022
Author(s):
ZHAN Yan-yan;XIAO Li-peng
关键词:
周期系数次正规解线性微分方程
Keywords:
periodic coefficientsubnormal solutionslinear differential equation
分类号:
O174.52
文献标志码:
A
摘要:
研究了周期系数的2阶齐次微分方程f”+[P1(ez)+Q1(e1)]f'+[P2(ez)+Q2(e-z)]f=0的次正规解的存在性及表示形式.当Qj(j=1,2)的次数不同时,所得方程的次正规解的表示形式将会不同,完善了已有的结果.
Abstract:
The representations of all subnormal solutions of second order homogeneous linear differential equations f ″+[P1(e)+Q1(e)]f '+[P2(e)+Q2(e)]f=0 are investigated.When the degrees of Qj(j=1,2)are different, the representations of subnormal solutions of equations will be different,which complete the existing results.

参考文献/References:

[1] Wittich H.Subnormale lösungen der differentialgleichung w″+p(e)w'+q(e)w=0 [J].Nagoya Math J,1967,30:29-37.
[2] 杨乐.值分布论及其新研究 [M].北京:科学出版社,1982.
[3] Huang Zhibo,Xia Xiaohua,Li Qian.Subnormal solutions of second order nonhomogeneous linear periodic differential equations [J].Commun Nonlinea Sci Numer Simulat,2010,15(4):881-885.
[4] Chiang Y M,Gao Shian.On a problem in complex oscillation theory of periodic second order linear differential equation and some related perturbation results [J].Ann Acad Sci Fenn Math,2002,27(2):273-290.
[5] Gundersen G G,Steinbart E M.Subnormal solutions of second order linear differential equations with periodic coefficients [J].Results in Math,1994,25(3/4):270-289.
[6] 江良英,陈宗煊.某类高阶整函数系数微分方程解的增长性 [J].江西师范大学学报:自然科学版,2005,29(1):12-14.
[7] 黄志刚,陈宗煊.关于齐次线性微分方程的复振荡 [J].江西师范大学学报:自然科学版,2000,24(1):6-11.
[8] 冯斌,刘慧芳,李延玲.一类高阶微分方程解的增长性 [J].江西师范大学学报:自然科学版,2012,36(4):335-338.
[9] 黄志波,陈宗煊.周期系数二阶齐次线性微分方程的次正规解 [J].数学学报:中文版,2009,52(1):9-16.
[10] 邱玲,易才凤.一类高阶微分方程解的增长率 [J].江西师范大学学报:自然科学版,2003,27(1):25-29.
[11] 陈宗煊.关于二阶线性周期微分方程的次正规解 [J].中国科学,2007,37(3):361-374.
[12] 丁友生,易才凤.关于n阶线性周期微分方程的次正规解 [J].江西师范大学学报:自然科学版,2009,33(1):1-4.
[13] Urabe H,Yang Congjun.On factorization of entire functions satisfying differential equations [J].Kodai Math J,1991,14(1):123-133.
[14] Gundersen G G.Estimates for the logarithmic derivative of a meromorphic function,plus similar estimates [J].J London Math Soc,1988,37(2):88-104.
[15] Gundersen G G.Finite order solutions of second order linear differential equations [J].Trans Amer Math Soc,1988,305(1):415-429.

备注/Memo

备注/Memo:
国家自然科学基金(11301232,11171119);江西省自然科学基金(20132BAB211009);江西省教育厅青年科学基金(GJJ12207)
更新日期/Last Update: 1900-01-01