[1]胡军,易才凤.高阶非齐次线性微分方程解沿径向的振荡性质[J].江西师范大学学报(自然科学版),2014,(02):162-166.
 HU Jun,YI Cai-feng.The Radial Oscillation of Higher Order Non-Homogeneous Linear Differential Equation[J].,2014,(02):162-166.
点击复制

高阶非齐次线性微分方程解沿径向的振荡性质()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2014年02期
页码:
162-166
栏目:
出版日期:
2014-04-30

文章信息/Info

Title:
The Radial Oscillation of Higher Order Non-Homogeneous Linear Differential Equation
作者:
胡军;易才凤
江西师范大学数学与信息科学学院,江西南昌,330022
Author(s):
HU Jun;YI Cai-feng
关键词:
微分方程角域径向Borel方向超级
Keywords:
differential equationssolutionsangular domainradialBorel directionhyper order
分类号:
O174.52
文献标志码:
A
摘要:
运用角域上值分布的理论和方法,研究了高阶非齐次线性微分方程的无穷级解沿径向上的振荡性质,得到了方程的无穷级解沿Borel方向上的超级和超级零点收敛指数的估计.
Abstract:
It is investigated that the radial oscillation of infinite order solutions of higher order nonhomogeneous linear differential equation,by using the fundamental theory and method of value distribution in angular domain.It was obtained that the estimations on the hyper order and the hyper order convergence exponent of the sequence of zero of infinite order solutions along it's Borel direction of hyper order.

参考文献/References:

[1] Hayman W K.Meromorphic function [M].Oxford:Clarendon Press,1964.
[2] 杨乐.值分布论及其新研究 [M].北京:科学出版社,1982.
[3] Kinnunen L.Linear differential equations with solutions of finite iterated order [J].Southeast Asian Bull Math,1998,22(4):385-405.
[4] Sato D.On the rate of growth of entire functions of fast growth [J].Bull Amer Math Soc,1963,69(3):411-414.
[5] Wu Zhaojun.Radial oscillation of linear differential equation [J].Bull Korean Math,2012,49(5):911-921.
[6] Chen Zongxuan,Yang Chungchun.Quantitative estimations on the zeros and growths of entire solutions of linear differential equations [J].Complex Variables and Elliptic Equations,2000,42(2):119-133.
[7] 郑秀敏,陈宗煊,曹廷彬,等.一类亚纯函数系数的高阶非齐次线性微分方程解的增长性 [J].江西师范大学学报:自然科学版,2004,28(5):431-435.
[8] 肖丽鹏,陈宗煊.一类高阶微分方程亚纯解的增长性 [J].数学研究,2005,38(3):265-271.
[9] 李延玲,刘慧芳,冯斌.微分方程的复振荡 [J].江西师范大学学报:自然科学版,2012,36(6):579-538.
[10] 石磊,易才风.一类高阶线性微分方程解的增长性 [J].江西师范大学学报:自然科学版,2012,36(3):230-233.
[11] 刘旭强,易才凤.关于2阶线性微分方程解的增长性 [J].江西师范大学学报:自然科学版,2013,37(2):171-174.
[12] 易才凤.高阶微分方程解的幅角分布 [J].数学学报,2005,48(1):133-140.
[13] Wu Zhaojun,Sun Daochun.Angular distribution of solutions of higher order linear differential equations [J].J Korean Math Soc,2007,44(6):1329-1338.
[14] Zheng Jianhua.Value distribution of meromorphic functions [M].Beijing:Tsinghua Univ Press,2010.
[15] Wu Shengjian.On the location of zeros of f ″+Af=0 where A(z) is entire [J].Math Scand,1994,74:293-312.

相似文献/References:

[1]石磊,易才凤.一类高阶线性微分方程解的增长性[J].江西师范大学学报(自然科学版),2012,(03):230.
 SHI Lei,YI Cai-feng.The Growth of Solutions for a Class Higher Order Linear Differential Equations[J].,2012,(02):230.
[2]冯斌,刘慧芳,李延玲.一类高阶微分方程解的增长性[J].江西师范大学学报(自然科学版),2012,(04):335.
 FENG Bin,LIU Hui-fang,LI Yan-ling.On the Growth for Solutions of a Certain Higher Order Differential Equation[J].,2012,(02):335.
[3]杨碧珑,易才凤.一类亚纯系数高阶线性微分方程解的增长性[J].江西师范大学学报(自然科学版),2012,(05):477.
 YANG Bi-long,YI Cai-feng.The Growth for Solutions of a Class of Higher Order Linear Differential Equations with Meromorphic Coefficient[J].,2012,(02):477.
[4]李延玲,刘慧芳,冯斌.微分方程f′′+A_1(z)e~(az~n)f′+A_0(z)e~(bz~n)f=F(z)的复振荡[J].江西师范大学学报(自然科学版),2012,(06):579.
 LI Yan-ling,LIU Hui-fang,FENG Bin.On the Complex Oscillation of Differential Equations[J].,2012,(02):579.
[5]刘旭强,易才凤.关于2阶线性微分方程f″+Af'+Bf=0解的增长性[J].江西师范大学学报(自然科学版),2013,(02):171.
 LIU Xu-qiang,YI Cai-feng.On the Growth of Solutions of the Second Order Linear Differential Equation f"+Af'+Bf =0[J].,2013,(02):171.
[6]安蕾,肖丽鹏.一类2阶微分方程的解和小函数的关系[J].江西师范大学学报(自然科学版),2013,(03):233.
 AN Lei,XIAO Li-peng.The Relation between Solutions of a Class of Second Order Differential Equation with Functions of Small Growth[J].,2013,(02):233.
[7]艾丽娟,易才凤.一类亚纯系数高阶线性微分方程解的增长性[J].江西师范大学学报(自然科学版),2014,(03):250.
 AI Li-juan,YI Cai-feng.The Growth for Solutions of a Class of Higher Order Linear Differential Equations with Meromorphic Coefficients[J].,2014,(02):250.
[8]杨碧珑,易才凤.一类高阶线性微分方程解在角域上的增长性[J].江西师范大学学报(自然科学版),2014,(04):390.
 YANG Bi-long,YI Cai-feng.The Growth of Solutions of a Class Higher Order Linear Differential Equations in Angular Donains[J].,2014,(02):390.
[9]钟文波,易才凤.一类高阶线性微分方程解的增长级[J].江西师范大学学报(自然科学版),2014,(04):399.
 ZHONG Wen-bo,YI Cai-feng.On the Growth of Solutions of a Class of Higher Order Linear Differential Equations[J].,2014,(02):399.
[10]龚攀,肖丽鹏.某类高阶复微分方程解的增长性[J].江西师范大学学报(自然科学版),2014,(05):512.
 GONG Pan,XIAO Li-peng.The Growth of Solutions of a Class of Higher Order Complex Differential Equations[J].,2014,(02):512.
[11]易才凤,刘旭强.方程f″+Af'+Bf=0的解在角域内的增长性及Borel方向[J].江西师范大学学报(自然科学版),2013,(01):1.
 YI Cai-feng,LIU Xu-qiang.The Growth and Borel Direction of Solutions for Differential Equation f" + Af' + Bf =0 in Angular Domains[J].,2013,(02):1.
[12]许淑娟,易才凤.高阶线性微分方程的解在角域内的增长性及Borel方向[J].江西师范大学学报(自然科学版),2013,(04):401.
 XU Shu-juan,YI Cai-feng.The Growth and Borel Direction of Solutions of Higher Order Linear Differential Equation in Angular Domains[J].,2013,(02):401.

备注/Memo

备注/Memo:
国家自然科学基金(11171170)
更新日期/Last Update: 1900-01-01