[1]杨碧珑,易才凤.一类高阶线性微分方程解在角域上的增长性[J].江西师范大学学报(自然科学版),2014,(04):390-394.
 YANG Bi-long,YI Cai-feng.The Growth of Solutions of a Class Higher Order Linear Differential Equations in Angular Donains[J].,2014,(04):390-394.
点击复制

一类高阶线性微分方程解在角域上的增长性()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2014年04期
页码:
390-394
栏目:
出版日期:
2014-08-31

文章信息/Info

Title:
The Growth of Solutions of a Class Higher Order Linear Differential Equations in Angular Donains
作者:
杨碧珑;易才凤
江西师范大学数学与信息科学学院,江西 南昌,330022
Author(s):
YANG Bi-long;YI Cai-feng
关键词:
微分方程亚纯函数亏值角域上的增长级
Keywords:
differential equationmeromorphic functiondeficient valueorder in angular domains
分类号:
O174.52
文献标志码:
A
摘要:
主要研究了高阶微分方程 f(k)+ Ak -1 f(k -1)+…+ A1 f '+ A0 f =0的解在角域上的增长性,其中 A0,Aj (1≤j≤k -1)为亚纯函数,且假设 A0以有限复数 a 为亏值,ρ(Aj )=0(1≤j≤k -1),通过给定适当的条件,证明了齐次线性微分方程的任一非零解在某些角域上的增长级为无穷。
Abstract:
The growth of solutions of the higher order differential equation f( k)+ Ak - 1 f( k - 1)+ … + A0 f = 0 is investi-gated in angular domains,where A0 and Aj(1≤j≤k - 1)are meromorphic functions,assuming that A0 has a finite deficient value a and ρ(Aj )= 0(1≤j≤k - 1). When some conditions is given,it is proved that every solution f0 of the equation is of infinite order in some given angular domains.

参考文献/References:

[1] Hayman W K.Meromorphic function [M].Oxford:Clarendon Press,1964.
[2] 杨乐.值分布论及其新研究 [M].北京:科学出版社,1982.
[3] Goldberg A A,Ostrovskii I V.The distribution of values of meromorphic functions [M].Russian:Izdat Nauk Moscow,1970.
[4] Nevannlinna R.Uber die eigenschaften meromorpher funktionen in einem winklraum [J].Acta Soc Sci Fenn,1925,50(12):1-45.
[5] Tsuji M.Potential theory in modern function theory [M].Tokyo:Maruzen Co LTD,1959.
[6] Zheng Jianhua.Value Distribution of meromorphic Functions [M].Berlin:Springer-Verlag,2010.
[7] Wu Nan.Growth of solutions to higher order linear homogeneous differential equations in angular domains [J].Electronic Journal of Differential Equations,2010,164(1):1-7.
[8] Wu Shengjian.Estimates for the logarithmic derivative of a meromorphic function in an angle and their application [C].Nankai:Proceeding of International Conference on Complex Analysis at the Nankai Institute of Mathematics,International,1992:235-241.
[9] Wu Shengjian.On transcendental meromorphic fuction with radially distributed values [J].China Ser A Math,2004,47(3):401-416.
[10] Baerstein A.Proof of edrei's spead conjecture [J].Proc London Math Soc,1973,26(3):418-434.
[11] Wu Shengjian.On the location of zeros of solution of f″+Af=0 where A(z) is entire [J].Math Scand,1994,14(2):293-312.
[12] 张广厚.整函数和亚纯函数理论 [M].北京:科学出版社,1986.
[13] 涂金,刘翠云,徐洪焱.亚纯函数相对于φ(r)的[p,q]增长级 [J].江西师范大学学报:自然科学版,2012,36(1):47-50.
[14] 石磊,易才凤.一类高阶线性微分方程解的增长性 [J].江西师范大学学报:自然科学版,2012,36(3):230-233.

相似文献/References:

[1]易才凤,李爱平.一类复合差分函数零点的估计[J].江西师范大学学报(自然科学版),2012,(01):41.
 YI Cai-feng,LI Ai-ping.The Estimate on Zeros of Composition Differences of Meromorphic Functions[J].,2012,(04):41.
[2]赵小珍.亚纯函数及其导数分担小函数集的唯一性[J].江西师范大学学报(自然科学版),2012,(02):141.
 ZHAO Xiao-zhen.The Uniqueness of Meromorphic Functions and Their Derivatives Weighted-Sharing the Sets of Small Functions[J].,2012,(04):141.
[3]石磊,易才凤.一类高阶线性微分方程解的增长性[J].江西师范大学学报(自然科学版),2012,(03):230.
 SHI Lei,YI Cai-feng.The Growth of Solutions for a Class Higher Order Linear Differential Equations[J].,2012,(04):230.
[4]冯斌,刘慧芳,李延玲.一类高阶微分方程解的增长性[J].江西师范大学学报(自然科学版),2012,(04):335.
 FENG Bin,LIU Hui-fang,LI Yan-ling.On the Growth for Solutions of a Certain Higher Order Differential Equation[J].,2012,(04):335.
[5]李延玲,刘慧芳,冯斌.微分方程f′′+A_1(z)e~(az~n)f′+A_0(z)e~(bz~n)f=F(z)的复振荡[J].江西师范大学学报(自然科学版),2012,(06):579.
 LI Yan-ling,LIU Hui-fang,FENG Bin.On the Complex Oscillation of Differential Equations[J].,2012,(04):579.
[6]易才凤,刘旭强.方程f″+Af'+Bf=0的解在角域内的增长性及Borel方向[J].江西师范大学学报(自然科学版),2013,(01):1.
 YI Cai-feng,LIU Xu-qiang.The Growth and Borel Direction of Solutions for Differential Equation f" + Af' + Bf =0 in Angular Domains[J].,2013,(04):1.
[7]肖丽鹏,李明星.单位圆内非齐次线性微分方程的振荡解[J].江西师范大学学报(自然科学版),2013,(02):166.
 XIAO Li-peng,LI Ming-xing.Oscillatory Solutions of Nonhomogeneous Linear Differential Equation in the Unit Disc[J].,2013,(04):166.
[8]吴佳,吴芬,陈裕先.向量值亚纯函数的亏量[J].江西师范大学学报(自然科学版),2013,(03):229.
 WU Jia,WU fen,CHEN Yu-xian.Deficiency of Vector Valued Meromorphic Function[J].,2013,(04):229.
[9]安蕾,肖丽鹏.一类2阶微分方程的解和小函数的关系[J].江西师范大学学报(自然科学版),2013,(03):233.
 AN Lei,XIAO Li-peng.The Relation between Solutions of a Class of Second Order Differential Equation with Functions of Small Growth[J].,2013,(04):233.
[10]许淑娟,易才凤.高阶线性微分方程的解在角域内的增长性及Borel方向[J].江西师范大学学报(自然科学版),2013,(04):401.
 XU Shu-juan,YI Cai-feng.The Growth and Borel Direction of Solutions of Higher Order Linear Differential Equation in Angular Domains[J].,2013,(04):401.
[11]杨碧珑,易才凤.一类亚纯系数高阶线性微分方程解的增长性[J].江西师范大学学报(自然科学版),2012,(05):477.
 YANG Bi-long,YI Cai-feng.The Growth for Solutions of a Class of Higher Order Linear Differential Equations with Meromorphic Coefficient[J].,2012,(04):477.
[12]刘旭强,易才凤.关于2阶线性微分方程f″+Af'+Bf=0解的增长性[J].江西师范大学学报(自然科学版),2013,(02):171.
 LIU Xu-qiang,YI Cai-feng.On the Growth of Solutions of the Second Order Linear Differential Equation f"+Af'+Bf =0[J].,2013,(04):171.
[13]艾丽娟,易才凤.一类亚纯系数高阶线性微分方程解的增长性[J].江西师范大学学报(自然科学版),2014,(03):250.
 AI Li-juan,YI Cai-feng.The Growth for Solutions of a Class of Higher Order Linear Differential Equations with Meromorphic Coefficients[J].,2014,(04):250.

备注/Memo

备注/Memo:
国家自然科学基金(11171170)
更新日期/Last Update: 1900-01-01