[1]曹富军,袁冬芳,葛永斌.对流扩散问题非均匀网格上的部分半粗化多重网格方法[J].江西师范大学学报(自然科学版),2014,(04):403-408.
 CAO Fu-jun,YUAN Dong-fang,GE Yong-bin.The Partial Seni-Coarse Multigrid Method on Nonuniforn Grid for Convection Diffusion Problens[J].,2014,(04):403-408.
点击复制

对流扩散问题非均匀网格上的部分半粗化多重网格方法()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2014年04期
页码:
403-408
栏目:
出版日期:
2014-08-31

文章信息/Info

Title:
The Partial Seni-Coarse Multigrid Method on Nonuniforn Grid for Convection Diffusion Problens
作者:
曹富军;袁冬芳;葛永斌
中国科技大学数学科学学院,安徽 合肥 230000; 内蒙古科技大学数理与生物工程学院,内蒙古 包头 014010; 北京应用物理与计算数学研究所计算物理实验室,北京 100088;内蒙古科技大学数理与生物工程学院,内蒙古 包头,014010;宁夏大学数学计算机学院,宁夏 银川,750021
Author(s):
CAO Fu-jun;YUAN Dong-fang;GE Yong-bin
关键词:
非均匀网格高精度紧致格式部分半粗化多重网格边界层对流扩散
Keywords:
nonuniform gridHOC schemepartial semi-coarsemultigirdboundary layer convection diffusion
分类号:
O241
文献标志码:
A
摘要:
结合非均匀网格上的 HOC 格式与部分半粗化的多重网格方法对具有边界层的2维对流扩散问题进行了求解,并基于面积率构造了部分半粗化多重网格方法的插值算子和限制算子。数值实验表明:对于只需要在1个方向进行网格加密的边界层问题,基于部分半粗化的网格分布策略及多重网格算法可以大大减少无边界层方向的网格数,从而较完全粗化的网格分布策略及多重网格算法具有更高的计算精度和求解效率。
Abstract:
The two dimensional convection diffusion problems are solved by combining the HOC scheme on nonuni-form grid with multigrid method in partial semi-coarse strategy. The projection operator and interpolation operator for partial semi-corase multigrid method are reconstructed by area ratio. The numerical results show that for the bounda-ry layer problems with boundary layer in only one direction,the partial semi-coarse mesh distribution strategy and corresponding multigrid method can greatly reduce the mesh number on the smooth solution direction. The multigrid method of partial semi-coarse strategy produces higher accuracy and costs less CPU time than that of full coarse mesh strategy.

参考文献/References:

[1] Kalita J C,Dass A K,Dalal D C.A transformation-free HOC scheme for steady convection-diffusion on non-uniform grids [J].Int J Numer Meth Fluids,2004,44(1):33-53.
[2] Zhang Jun.Multigrid method and fourth-order compact scheme for 2D poisson equation with unequal grids size discretization [J].J Comput Phys,2002,179(1):170-179.
[3] Tian Zhengfu,Dai Shiqiang.High-order compact exponential finite difference methods for convection-diffusion type problems [J].J Comput Phys,2007,220(2):952-974.
[4] 曹莹,孔令华,王兰,等.3维Helmholtz方程的4阶紧致 有限差分格式 [J].江西师范大学学报:自然科学版,2010,34(6):597-599.
[5] 黄雪芳,郭锐,葛永斌.一维非定常对流扩散方程非均匀网格上的高精度紧靠致差分格式 [J].工程数学学报,2014(3):371-380.
[6] 袁冬芳,曹富军,石琳.对流扩散方程非均匀网格上四阶紧致格式的预条件迭代法 [J].山西大学学报:自然科学版,2013(3):379-388.
[7] Wang Jie,Zhong Weijun,Zhang Jun.A general meshsize fourth-order compact difference discretization scheme for 3D poisson equation [J].Appl Math Comput,2006,183(2):804-812.
[8] Ge Lixin,Zhang Jun.Accuracy,robustness and efficiency comparison in iterative computation of convection diffusion equation with boundary layers [J].Numerical Methods of Partial Differential Eqs,2000,16(3):379-394.
[9] Ge Yongbin,Cao Fujun,Zhang Jun.A transformation-free HOC scheme and multigrid method for solving the 3D poisson equation on nonuniform grids [J].J Comput Phys,2013,234(1):199-216.
[10] Ge Yongbin,Cao Fujun.Multigrid method based on the transformation-free HOC scheme on nonuniform grids for 2D convection diffusion problems [J].J Comput Phys,2011,230(10):4051-4070.
[11] Ge Yongbin.Multigrid method and fourth-order compact difference discretization scheme with unequal meshsizes for 3D poisson equation [J].J Comput Phys,2010,229(18):6381-6391.

备注/Memo

备注/Memo:
国家自然科学基金(11061025,61263015);内蒙古科技大学校内创新基金(2011NCL019,2011NCL031)
更新日期/Last Update: 1900-01-01