[1]薛盼,贾云锋.一类带Holling-IV型反应函数的捕食-食饵模型的全局分歧[J].江西师范大学学报(自然科学版),2014,(04):409-412.
 XUE Pan,JIA Yun-feng.The Study on Global Bifurcation of a Predator-Prey Model with Holling-IV Functional ResPonse[J].,2014,(04):409-412.
点击复制

一类带Holling-IV型反应函数的捕食-食饵模型的全局分歧()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2014年04期
页码:
409-412
栏目:
出版日期:
2014-08-31

文章信息/Info

Title:
The Study on Global Bifurcation of a Predator-Prey Model with Holling-IV Functional ResPonse
作者:
薛盼;贾云锋
陕西师范大学数学与信息科学学院,陕西 西安,710062
Author(s):
XUE Pan;JIA Yun-feng
关键词:
捕食-食饵模型平衡解Holling-IV 型全局分歧
Keywords:
predator-prey modelsteady-state solutionsHolling-IVglobal bifurcation
分类号:
O175.2
文献标志码:
A
摘要:
研究了一类带 Holling-IV 型反应函数的捕食-食饵模型在齐次 Neumann 边界条件下的平衡态解的存在性。首先,通过谱分析法得到常数平衡解的稳定性结论;其次,在1维的情况下,利用局部分歧理论得出在常数解处可以产生局部分歧;最后,利用全局分歧理论证明该局部分歧可以延拓为全局分歧,其连通分支伸向无穷。
Abstract:
The existence of steady-state solutions of a predator-prey model with Holling-IV functional response is studied under homogeneous Neumann boundary condition. Firstly,by the spectral analysis method,the stability of the solution is obtained. Secondly,by means of local bifurcation theory,it is proved that the model bifurcations at the trivial solution in the one dimensional case. Finally,making use of global bifurcation theory,it is showed that the lo-cal bifurcation can be extend to global bifurcation,and the continuum joins up with infinity.

参考文献/References:

[1] Andrews J F.A mathematical model for the continuous culture of mocrooganisms utilizing inhabitory substrates [J].Biotechnol Bioeng,1968,10(4):707-723.
[2] Collings J B.The effects of the functional response on the bifurcation behavior of a mite predator-prey interaction model [J].J Math Biol,1997,36(1):149-168.
[3] Sokol W,Howell J A.Kinetics of phenol oxidation by washed cells [J].Biotechnol Bioeng,1981,23(9):2039-2049.
[4] Pang P Y H,Wang Mingxin.Non-constant positive steady states of a predator-prey system with non-monotonic functional response and diffusion [J].Proc London Math Soc,2004,88(3):135-157.
[5] Chen Xinfu,Qi Yuanwei,Wang Mingxin.A strongly coupled predator-prey system with non-monotonic functional response [J].Nonlinear Anal,2007,67(6):1966-1979.
[6] Jia Yunfeng,Wu Jianhua,Nie Hua.The coexistence states of a predator-prey model with nonmonotonic functional response and diffusion [J].Acta Appl Math,2009,108(2):413-428.
[7] Smoller J.Shockwaves and reaction-diffusion equations [M].New York:Springer-Verlag,1983.
[8] 叶其孝,李正元.反应扩散方程引论 [M].北京:科学技术出版社,1994.
[9] Jang J,Ni Weiming,Tang Moxun.Global bifurcation and structure of Turing patterns in the 1-D Lengyel-Epstein model [J].J Dynam Differential Equations,2004,16(2):297-320.
[10] Ni Weiming,Tang Moxun.Turing patterns in the Lengyel-Epstein system for the CIMA reaction [J].Trans Amer Math Soc,2005,357(10):3953-3969.

备注/Memo

备注/Memo:
国家自然科学基金(11271236);教育部“新世纪优秀人才支持计划”(NCET-12-0894);中央高校基本科研业务费专项资金(GK201303008,GK201302025)
更新日期/Last Update: 1900-01-01