[1]赵飞,蔡志权,葛永斌.1维非定常对流扩散方程的有理型高阶紧致差分格式[J].江西师范大学学报(自然科学版),2014,(04):413-418.
 ZHAO Fei,CAI Zhi-quan,GE Yong-bin.A Rational High-Order ConPact Difference Schene for the 1D Unsteady Convection-Diffusion Equation[J].,2014,(04):413-418.
点击复制

1维非定常对流扩散方程的有理型高阶紧致差分格式()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2014年04期
页码:
413-418
栏目:
出版日期:
2014-08-31

文章信息/Info

Title:
A Rational High-Order ConPact Difference Schene for the 1D Unsteady Convection-Diffusion Equation
作者:
赵飞;蔡志权;葛永斌
宁夏大学数学计算机学院,宁夏 银川,750021
Author(s):
ZHAO Fei;CAI Zhi-quan;GE Yong-bin
关键词:
非定常对流扩散方程有理型高阶紧致差分格式无条件稳定
Keywords:
unsteady convection-diffusion equationrational typehigh-order compact difference schemeuncondi-tionally stable
分类号:
O241.82
文献标志码:
A
摘要:
针对1维非定常对流扩散方程,首先建立了1种2层有理型高阶紧致差分格式,其局部截断误差为O(h4+τ2)。然后采用 von Neumann 分析方法证明了该格式是无条件稳定的。由于在每个时间层上只涉及到3个网格点,因此可直接采用追赶法求解此差分方程。最后通过3个数值算例验证了方法的精确性和可靠性。数值结果表明:所述格式不仅能够适用于非定常对流扩散问题,而且能够较好地求解非定常纯对流问题或纯扩散问题,并且其计算效果均优于 Crank-Nicolson(C-N)格式和指数型高阶紧致(EHOC)差分格式。
Abstract:
A two-level rational high-order compact difference scheme for solving the 1D unsteady convection-diffu-sion equation is proposed. The local truncation error of the scheme is O(h4 + τ2 ). It is proved that is unconditionally stable by von Neumann analysis method. Because only three points are used at each time level,this difference scheme can be solved by the method of forward elimination and backward substitution. Finally,numerical experi-ments for three test examples are carried out to demonstrate the accuracy and the effectiveness of the present meth-od. It is found that the present method is not only easy to be implemented to solve the 1D unsteady convection- dif-fusion problems,but also can be used to solve the unsteady pure convection problems or the pure diffusion prob-lems. And the computed results are better than Crank-Nicolson(C-N)scheme and the exponential high-order com-pact(EHOC)difference scheme.

参考文献/References:

[1] 刘扬.对流扩散方程的新型Crank-Nicholson差分格式 [J].数学杂志,2005,25(4):463-467.
[2] 王同科.一维对流扩散方程Crank-Nicolson特征差分格式 [J].应用数学,2001,14(4):55-60.
[3] Gao Zhi.An infinite-order accurate upwind compact difference scheme for the convective-diffusion equati-on [C]∥Proceeding of Asia Workshop on computational Fluid Dynamics.Chengdu:Sichuan University Press,1994:18-24.
[4] 蔡国洋,田敏,冯秀芳.一类求解变系数对流扩散方程的指数型显式方法 [J].宁夏大学学报:自然科学版,2013,34(1):1-3.
[5] 杨志峰,陈国谦.含源项非定常对流扩散问题紧致四阶差分格式 [J].科学通报,1993,38(2):113-116.
[6] 林建国,许维德,陶尧森.含源项非定常非线性对流扩散方程的三次样条四阶差分格式 [J].水动力学研究与进展:A辑,1994,9(2):599-602.
[7] Spotz W F,Carey G F.Extension of high-order compact schemes to time-dependent problems [J].Numerical Methods for Partial Differential Equations,2001,17(2):657-672.
[8] 葛永斌,田振夫,吴文权.含源项非定常对流扩散方程的高精度紧致隐式差分方法 [J].水动力学研究与进展:A辑,2006,21(5):619-625.
[9] 田振夫.一维对流扩散方程的四阶精度有限差分方法 [J].宁夏大学学报:自然科学版,1995,16(1):32-35.
[10] Karaa S,Zhang Jun.High order ADI method for solving unsteady convection-diffusion problems [J].Journal of Computational Physics,2004,198(1):1-9.
[11] MacKinnon R J,Johnson R M.Differential equation based representation of truncation errors for accurate numerical simulation [J].International Journal for Numerical Methods in Fluids,1991,13(6):739-757.
[12] Spotz W F,Carey G F.High-order compact scheme for the steady stream-function vorticity equations [J].International Journal for Numerical Methods in Engineering,1995,38(3):3497- 3512.
[13] You D.A High order Padé ADI method for unsteady convection-diffusion equations [J].Journal of Computational Physics,2006,214(1):1-11.

备注/Memo

备注/Memo:
国家自然科学基金(11061025,11361045);霍英东教育基金会高等院校青年教师基金(121105);宁夏高等学校科学技术研究(NGY2013019)
更新日期/Last Update: 1900-01-01