[1]郭新伟,吕延芳,齐海涛.一类Markov-Feller算子不变测度的存在性与唯一性[J].江西师范大学学报(自然科学版),2014,(04):419-423.
 GUO Xin-wei,LYU Yan-fang,QI Hao-tao.The Existence and Uniqueness of Invariant Probability Measures for a Class of Markov-Feller OPerators[J].,2014,(04):419-423.
点击复制

一类Markov-Feller算子不变测度的存在性与唯一性()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2014年04期
页码:
419-423
栏目:
出版日期:
2014-08-31

文章信息/Info

Title:
The Existence and Uniqueness of Invariant Probability Measures for a Class of Markov-Feller OPerators
作者:
郭新伟;吕延芳;齐海涛
山东大学 威海 数学与统计学院,山东 威海,264209
Author(s):
GUO Xin-wei;LYU Yan-fang;QI Hao-tao
关键词:
Markov-Feller 算子不变测度唯一不变测度
Keywords:
Markov-Feller operatorsinvariant measuresunique invariant measures
分类号:
O177.99
文献标志码:
A
摘要:
讨论了完备可分距离空间上一类 Markov-Feller 算子的遍历性质,给出了存在不变测度的充分必要条件以及唯一不变测度的充分条件,研究了此类算子轨道的稠密性质。
Abstract:
The ergodic property of the Markov-Feller operators on complete separable spaces is discussed. The exist-ence and uniqueness of invariant probability measures for the Markov-Feller operators with equicontinuous dual op-erators is given. In addition,the dense trajectories for the operators is studied.

参考文献/References:

[1] Walters P.An introduction to Ergodic theory [M].Berlin:Springer-Verlag,2003:146-153.
[2] 王明文.一类Markov过程不变测度的存在性及应用 [J].江西师范大学学报:自然科学版,1991,15(4):306-312.
[3] Lasserre J B.Invariant probabilities for Markov chains on a metric space [J].Stat Probab Lett,1997,34(3):259-265.
[4] Lasserre J B.Existence and uniqueness of an invariant probability for a class of Feller-Markov chains [J].Theoret Probab,1996,9(3):595-612.
[5] Szarek T.The stability of Markov operators on Polish spaces [J].Stud Math,2000,143(2):145-152.
[6] Lasto A,Myjak J,Szarek T.Markov operators with a unique invariant measure [J].J Math Anal App,2002,276(1):343-356.
[7] Szarek T.The uniqueness of invariant measures for Markov operators [J].Stud Math,2008,189(3):225-233.
[8] Hairer M,Mattingly J.Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic foring [J].Ana Math,2006,164(3):992-1032.
[9] Szarek T.Feller processes on nonlocally compact spaces [J].The Annals of Probability,2006,34(5):1849-1863.
[10] Zaharopol R.Invariant probabilities of Markov-Feller operators and their supports [M].Basel:Birkhǎuser-Verlag,2005.
[11] Lemma O H,Lasserre J B.Markov chain and invariant probabilities [M].Basel:Birkǎuser-Verlag,2003.
[12] Weaver N.Lipschitz algebras [M].New York:World Scientific Publishing Co Pte Ltd,1999.
[13] Dudley R M.Real analysis and probability [M].Beijing:China Machine Press,2006.
[14] Fougel S R.The Erdodic theory of Markov processes [M].New York:Vas Nostrand Reihold Co,1969.
[15] 郭新伟,喻建华,齐海涛.一类Markov的遍历性 [J].江西师范大学学报:自然科学版,2013,37(2):183-186.
[16] Ethier S N,Kurtz T G.Markov process characterization and convergence [M].New York:John Wiley & Sons,1983.
[17] Meyn S P,Tweedie R L.Markovchains and stochastic stability [M].Berlin:Springer-Verlag,1993.

相似文献/References:

[1]郭新伟,喻建华,齐海涛.一类Markov算子的遍历性[J].江西师范大学学报(自然科学版),2013,(02):183.
 GUO Xin-wei,YU Jian-hua,Qi Hai-tao.Ergodicity for a Class of Markov Operators[J].,2013,(04):183.

备注/Memo

备注/Memo:
国家自然科学基金(111022102)
更新日期/Last Update: 1900-01-01