[1]龚攀,肖丽鹏.某类高阶复微分方程解的增长性[J].江西师范大学学报(自然科学版),2014,(05):512-516.
 GONG Pan,XIAO Li-peng.The Growth of Solutions of a Class of Higher Order Complex Differential Equations[J].,2014,(05):512-516.
点击复制

某类高阶复微分方程解的增长性()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2014年05期
页码:
512-516
栏目:
出版日期:
2014-10-31

文章信息/Info

Title:
The Growth of Solutions of a Class of Higher Order Complex Differential Equations
作者:
龚攀;肖丽鹏
江西师范大学数学与信息科学学院,江西 南昌,330022
Author(s):
GONG Pan;XIAO Li-peng
关键词:
微分方程角域增长级
Keywords:
differential equationsangular domainthe order of growth
分类号:
O174.52
文献标志码:
A
摘要:
主要研究高阶微分方程 f(k)+∑k-1 j =1 Pj(e -z )f(j)+ Q(z)f =0解的增长性,其中 Q(z)是有限级超越整函数,Pj(e -z )(j =1,2,…,k -1)为 e -z 的非常数多项式。当 Q(z)满足一定条件时,该微分方程的任意非平凡解为无穷级解,并讨论了对应的非齐次微分方程解的增长性。
Abstract:
The growth of solutions of the higher order linear differential equations f(k)+∑k-1j=1 Pj(e-z)f(j)+Q(z)f =0 are discussed,where Q( z)is a transcendental entire function of finite order,and Pj( e-z )are non-constant polyno-mials. Some conditions on Q( z)are given which can guarantee that every non-rivial solution of the equation is infi-nite order,the growth of solutions to the corresponding non-homogeneous differential equation is discussed.

参考文献/References:

[1] 杨乐.值分布论及其新研究 [M].北京:科学出版社,1982.
[2] 张广厚.整函数与亚纯函数理论:亏值,渐进值和奇异方向 [M].北京:科学出版社,1986.
[3] Hayman W.Meromorphic function [M].Oxford:Clarendon Press,1964.
[4] Laine I.Nevanlinna theory and complex differential equations [M].Berlin:W de Gruyter,1993.
[5] Wu Shengjian.On the growth of solutions of second order linear differential equations in an angle [J].Complex Variables,1994,24(3/4):241-248.
[6] Hille E.Ordinary differential equations in the complex domain [M].New York:Wiley,1976.
[7] Hellenstein S,Miles J,Rossi J.On the growth of solutions of f ″+gf '+hf=0 [J].Trans Amer Math Soc,1991,324(2):693-706.
[8] 陈宗煊.微分方程f ″+ef '+Q(z)f=0解的增长性 [J].中国科学:A辑,2001,31(9):775-784.
[9] 刘旭强,易才凤.关于2阶线性微分方程f ″+Af '+B=0解的增长性 [J].江西师范大学学报:自然科学版,2013,37(2):171-174.
[10] 李延玲,刘慧芳,冯斌.微分方程f ″+A1(z)e/sup>nf '+A0(z)e/sup>nf=F(z)的复振荡 [J].江西师范大学学报:自然科学版,2012,36(6):579-583.
[11] 陶磊,龙见仁,伍鹏程.关于微分方程f ″+e〖JB<1/〗(e+1)f '+Q(z)f=0解的增长性 [J].贵州师范大学学报:自然科学版,2013,31(2):46-49.
[12] Gundersen G G.Estimates for the logarithmic derivative of a meromorphic function,plus similar estimates [J].J London Math Soc,1988,37(2):88-104.
[13] Bank S.A general theorem concerning the growth of solutions of first order algebraic differential equations [J].Composition Math,1972,25(1):61-70.
[14] 徐俊峰,仪洪勋.高阶线性微分方程解的角域增长性 [J].系统科学与数学,2008,28(6):702-708.
[15] 戴宗基,嵇善瑜.ρ级射线及其Borel方向分布间的关系 [J].上海师范大学学报:自然科学版,1982(2):16-24.
[16] Barry P.Some theorems related to the cos πρ theorem [J].Proc London Math Soc,1970,21(3):334-360.
[17] Chen Zongxuan,Gao Shian.On the complex oscillation of non-homogeneous linear differential equations with meromorphic coefficients [J].Kodai Math J,1992,15(1):66-78.
[18]Chen Zongxuan.On the hyper order of solutions of higher order differential equations [J].Chin Ann Math,2003,24B(4):501-508.

相似文献/References:

[1]石磊,易才凤.一类高阶线性微分方程解的增长性[J].江西师范大学学报(自然科学版),2012,(03):230.
 SHI Lei,YI Cai-feng.The Growth of Solutions for a Class Higher Order Linear Differential Equations[J].,2012,(05):230.
[2]冯斌,刘慧芳,李延玲.一类高阶微分方程解的增长性[J].江西师范大学学报(自然科学版),2012,(04):335.
 FENG Bin,LIU Hui-fang,LI Yan-ling.On the Growth for Solutions of a Certain Higher Order Differential Equation[J].,2012,(05):335.
[3]杨碧珑,易才凤.一类亚纯系数高阶线性微分方程解的增长性[J].江西师范大学学报(自然科学版),2012,(05):477.
 YANG Bi-long,YI Cai-feng.The Growth for Solutions of a Class of Higher Order Linear Differential Equations with Meromorphic Coefficient[J].,2012,(05):477.
[4]李延玲,刘慧芳,冯斌.微分方程f′′+A_1(z)e~(az~n)f′+A_0(z)e~(bz~n)f=F(z)的复振荡[J].江西师范大学学报(自然科学版),2012,(06):579.
 LI Yan-ling,LIU Hui-fang,FENG Bin.On the Complex Oscillation of Differential Equations[J].,2012,(05):579.
[5]刘旭强,易才凤.关于2阶线性微分方程f″+Af'+Bf=0解的增长性[J].江西师范大学学报(自然科学版),2013,(02):171.
 LIU Xu-qiang,YI Cai-feng.On the Growth of Solutions of the Second Order Linear Differential Equation f"+Af'+Bf =0[J].,2013,(05):171.
[6]安蕾,肖丽鹏.一类2阶微分方程的解和小函数的关系[J].江西师范大学学报(自然科学版),2013,(03):233.
 AN Lei,XIAO Li-peng.The Relation between Solutions of a Class of Second Order Differential Equation with Functions of Small Growth[J].,2013,(05):233.
[7]艾丽娟,易才凤.一类亚纯系数高阶线性微分方程解的增长性[J].江西师范大学学报(自然科学版),2014,(03):250.
 AI Li-juan,YI Cai-feng.The Growth for Solutions of a Class of Higher Order Linear Differential Equations with Meromorphic Coefficients[J].,2014,(05):250.
[8]杨碧珑,易才凤.一类高阶线性微分方程解在角域上的增长性[J].江西师范大学学报(自然科学版),2014,(04):390.
 YANG Bi-long,YI Cai-feng.The Growth of Solutions of a Class Higher Order Linear Differential Equations in Angular Donains[J].,2014,(05):390.
[9]钟文波,易才凤.一类高阶线性微分方程解的增长级[J].江西师范大学学报(自然科学版),2014,(04):399.
 ZHONG Wen-bo,YI Cai-feng.On the Growth of Solutions of a Class of Higher Order Linear Differential Equations[J].,2014,(05):399.
[10]闵小花,张红霞,易才凤.2阶微分方程的解与小函数的关系[J].江西师范大学学报(自然科学版),2014,(06):551.
 MIN Xiao-hua,ZHANG Hong-xia,YI Cai-feng.The Relations between Solutions of Second Order Linear Differential Equations with Functions of Small Growth[J].,2014,(05):551.
[11]易才凤,刘旭强.方程f″+Af'+Bf=0的解在角域内的增长性及Borel方向[J].江西师范大学学报(自然科学版),2013,(01):1.
 YI Cai-feng,LIU Xu-qiang.The Growth and Borel Direction of Solutions for Differential Equation f" + Af' + Bf =0 in Angular Domains[J].,2013,(05):1.
[12]许淑娟,易才凤.高阶线性微分方程的解在角域内的增长性及Borel方向[J].江西师范大学学报(自然科学版),2013,(04):401.
 XU Shu-juan,YI Cai-feng.The Growth and Borel Direction of Solutions of Higher Order Linear Differential Equation in Angular Domains[J].,2013,(05):401.
[13]胡军,易才凤.高阶非齐次线性微分方程解沿径向的振荡性质[J].江西师范大学学报(自然科学版),2014,(02):162.
 HU Jun,YI Cai-feng.The Radial Oscillation of Higher Order Non-Homogeneous Linear Differential Equation[J].,2014,(05):162.

备注/Memo

备注/Memo:
国家自然科学基金(11301232,11171119);江西省自然科学基金(20132BAB211009);江西省教育厅青年科学基金(GJJ12207)
更新日期/Last Update: 1900-01-01