[1]闵小花,张红霞,易才凤.2阶微分方程的解与小函数的关系[J].江西师范大学学报(自然科学版),2014,(06):551-556.
 MIN Xiao-hua,ZHANG Hong-xia,YI Cai-feng.The Relations between Solutions of Second Order Linear Differential Equations with Functions of Small Growth[J].,2014,(06):551-556.
点击复制

2阶微分方程的解与小函数的关系()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2014年06期
页码:
551-556
栏目:
出版日期:
2014-12-31

文章信息/Info

Title:
The Relations between Solutions of Second Order Linear Differential Equations with Functions of Small Growth
作者:
闵小花;张红霞;易才凤
江西师范大学数学与信息科学学院,江西 南昌,330022
Author(s):
MIN Xiao-hua;ZHANG Hong-xia;YI Cai-feng
关键词:
微分方程整函数超级2级收敛指数
Keywords:
differential equationentire functionhyper-order2 th exponents of convergence
分类号:
O174.52
文献标志码:
A
摘要:
运用Nevanlinna值分布的基本理论和方法,研究了几类2阶线性微分方程的解及其导数取小函数的不同点的收敛指数,得到了方程解及其导数取小函数的不同点的收敛指数为无穷和2阶收敛指数等于解的超级的精确结果。
Abstract:
It was investigated that the relations between solutions of second order linear differential equations and their 1 th and 2 th derivatives with the small growth functions by using the theory and the method of Nevanlinna val-ue distribution. The precision result was obtained that convergence exponents of various points of equation solutions and their derivatives fetch the small growth function is infinite and the 2 th convergence exponents with the hyper or-der of solution is equal.

参考文献/References:

[1] Hayman W K.Meromorphic function [M].Oxford:Clarendon Press,1964.
[2] 杨乐.值分布论及其新研究 [M].北京:科学出版社,1982.
[3] 陈宗煊,孙光镐.一类二阶微分方程的解和小函数的关系 [J].数学年刊:A辑,2006,27(4): 431-442.
[4] 陈裕先,陈宗煊.微分方程的解与小函数的关系 [J].江西师范大学学报:自然科学版,2002,26(1):15-20.
[5] 程涛,陈宗煊.非齐次线性微分方程解取小函数的点的收敛指数 [J].江西师范大学学报:自然科学版,2002,26(1):21-27.
[6] 刘慧芳.齐次线性微分方程解取小函数的点的收敛指数 [J].江西师范大学学报:自然科学版,2003,27(2):118-121.
[7] 陈宗煊.微分方程f ″+ef '+Q(z)f=0解的增长性 [J].中国科学:A辑,2001,31(9):775-785.
[8] 安蕾,肖丽鹏.一类2阶微分方程的解和小函数的关系 [J].江西师范大学学报:自然科学版,2013,37(3):233-235.
[9] Chen Zongxuan.Zeros of meromorphic solutions of higher order linear differential equations [J].Analysis,1994,14(4):425-438.
[10] Yang Congjun,Yi Hongxun.Uniqueness theory of meromorphic functions [M].New York:Kluwer Academic Publishers,2003.
[11] Cheng Tao,Kang Yueming.The growth of the solutions of a certain linear differential equation [J].Journal of Fudan University,2006,45(5):611-618.

相似文献/References:

[1]涂金,刘翠云,徐洪焱.亚纯函数相对于(r)的[p,q]增长级[J].江西师范大学学报(自然科学版),2012,(01):47.
 TU Jin,LIU Cui-yun,XU Hong-yan.Meromorphic Functions of Relative [p,q] Order to (r)[J].,2012,(06):47.
[2]冯斌,刘慧芳,李延玲.一类高阶微分方程解的增长性[J].江西师范大学学报(自然科学版),2012,(04):335.
 FENG Bin,LIU Hui-fang,LI Yan-ling.On the Growth for Solutions of a Certain Higher Order Differential Equation[J].,2012,(06):335.
[3]杨碧珑,易才凤.一类亚纯系数高阶线性微分方程解的增长性[J].江西师范大学学报(自然科学版),2012,(05):477.
 YANG Bi-long,YI Cai-feng.The Growth for Solutions of a Class of Higher Order Linear Differential Equations with Meromorphic Coefficient[J].,2012,(06):477.
[4]易才凤,刘旭强.方程f″+Af'+Bf=0的解在角域内的增长性及Borel方向[J].江西师范大学学报(自然科学版),2013,(01):1.
 YI Cai-feng,LIU Xu-qiang.The Growth and Borel Direction of Solutions for Differential Equation f" + Af' + Bf =0 in Angular Domains[J].,2013,(06):1.
[5]刘旭强,易才凤.关于2阶线性微分方程f″+Af'+Bf=0解的增长性[J].江西师范大学学报(自然科学版),2013,(02):171.
 LIU Xu-qiang,YI Cai-feng.On the Growth of Solutions of the Second Order Linear Differential Equation f"+Af'+Bf =0[J].,2013,(06):171.
[6]许淑娟,易才凤.高阶线性微分方程的解在角域内的增长性及Borel方向[J].江西师范大学学报(自然科学版),2013,(04):401.
 XU Shu-juan,YI Cai-feng.The Growth and Borel Direction of Solutions of Higher Order Linear Differential Equation in Angular Domains[J].,2013,(06):401.
[7]胡军,易才凤.高阶非齐次线性微分方程解沿径向的振荡性质[J].江西师范大学学报(自然科学版),2014,(02):162.
 HU Jun,YI Cai-feng.The Radial Oscillation of Higher Order Non-Homogeneous Linear Differential Equation[J].,2014,(06):162.
[8]艾丽娟,易才凤.一类亚纯系数高阶线性微分方程解的增长性[J].江西师范大学学报(自然科学版),2014,(03):250.
 AI Li-juan,YI Cai-feng.The Growth for Solutions of a Class of Higher Order Linear Differential Equations with Meromorphic Coefficients[J].,2014,(06):250.
[9]杨碧珑,易才凤.一类高阶线性微分方程解在角域上的增长性[J].江西师范大学学报(自然科学版),2014,(04):390.
 YANG Bi-long,YI Cai-feng.The Growth of Solutions of a Class Higher Order Linear Differential Equations in Angular Donains[J].,2014,(06):390.
[10]龚攀,肖丽鹏.某类高阶复微分方程解的增长性[J].江西师范大学学报(自然科学版),2014,(05):512.
 GONG Pan,XIAO Li-peng.The Growth of Solutions of a Class of Higher Order Complex Differential Equations[J].,2014,(06):512.
[11]石磊,易才凤.一类高阶线性微分方程解的增长性[J].江西师范大学学报(自然科学版),2012,(03):230.
 SHI Lei,YI Cai-feng.The Growth of Solutions for a Class Higher Order Linear Differential Equations[J].,2012,(06):230.
[12]李延玲,刘慧芳,冯斌.微分方程f′′+A_1(z)e~(az~n)f′+A_0(z)e~(bz~n)f=F(z)的复振荡[J].江西师范大学学报(自然科学版),2012,(06):579.
 LI Yan-ling,LIU Hui-fang,FENG Bin.On the Complex Oscillation of Differential Equations[J].,2012,(06):579.
[13]安蕾,肖丽鹏.一类2阶微分方程的解和小函数的关系[J].江西师范大学学报(自然科学版),2013,(03):233.
 AN Lei,XIAO Li-peng.The Relation between Solutions of a Class of Second Order Differential Equation with Functions of Small Growth[J].,2013,(06):233.
[14]钟文波,易才凤.一类高阶线性微分方程解的增长级[J].江西师范大学学报(自然科学版),2014,(04):399.
 ZHONG Wen-bo,YI Cai-feng.On the Growth of Solutions of a Class of Higher Order Linear Differential Equations[J].,2014,(06):399.

备注/Memo

备注/Memo:
国家自然科学基金(11171170)
更新日期/Last Update: 1900-01-01