[1]阿力木·米吉提.带负顾客的非空竭服务休假排队模型非负解的存在唯一性[J].江西师范大学学报(自然科学版),2014,(06):574-577.
 ALIM Mijit.Existence and Uniqueness of Nonnegative Solution of the Queue with Negative Customers and Vacation on Non-Exhaustive Service[J].,2014,(06):574-577.
点击复制

带负顾客的非空竭服务休假排队模型非负解的存在唯一性()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2014年06期
页码:
574-577
栏目:
出版日期:
2014-12-31

文章信息/Info

Title:
Existence and Uniqueness of Nonnegative Solution of the Queue with Negative Customers and Vacation on Non-Exhaustive Service
作者:
阿力木·米吉提
新疆广播电视大学,新疆 乌鲁木齐,830049
Author(s):
ALIM Mijit
关键词:
M/G/1 排队系统C0-半群dispersive 算子
Keywords:
M/G/1 queueC0-semigroupdispersive operator
分类号:
O177.2
文献标志码:
A
摘要:
讨论了一类带负顾客的非空竭休假排队系统。首先对应于此系统的数学模型转化为 Banach 空间中的抽象 Cauchy 问题,然后使用泛函分析中的 Hille-Yosida 定理、Phillips 定理证明此排队模型非负解的存在唯一性。
Abstract:
The queuing system with negative customers and vacation on non-exhaustive service is discussed. First the mathematical model of the queuing system is converted into an abstract Cauchy problem in a Banach space,then the existence and uniqueness of the nonnegative solution of this queuing model is obtained by using the Hille-Yosida theorem and the Phillips theorem in functional analysis.

参考文献/References:

[1] Gelenbe E.Random neural networks with negative and positive signals and product form solution [J].Neural Comput,1989,1(4):502-510.
[2] Gelenbe E,Glynn P,Sigman K.Queues with negative arri- vals [J].J Appl Prob,1991,28(1):245-250.
[3] Gelenbe E.Product form networks with negative and positive customers [J].J Appl Prob,1991,28(3):656-663.
[4] Harrison P G,Pitel E.The M/G/1 queue with negative customers [J].Adv Appl Prob,1996,28(2):540-566.
[5] Harrison P G,Pitel E.Sojourn times in single-server queues with negative customers [J].J Appl Prob,1993,30(4):943-963.
[6] 周文慧,邓永录.具有负顾客到达的M/G/1 可修排队系统 [J].运筹学学报,2006,10(2):28-36.
[7] 伍慧玲,尹小玲.有单移除策略的M/G/1 重试可修排队系统 [J].中山大学学报:自然科学版,2005,44(S1):133-137.
[8] 尹小玲,邓永录,招雁鸿.带有负顾客且正顾客有流失的M/G/1休假排队系统 [C]∥中国运筹学会可靠性学会第7届学术会议论文集.北京:清华大学出版社,2005:123-128.
[9] 唐学德,朱翼隽,冯艳刚.具有2种服务的负顾客M/(G1/G2)/1排队系统 [J].江西师范大学学报:自然科学版,2007,31(5):500-503.
[10] 尹小玲.带负顾客的非空竭服务休假排队系统的稳态分析 [J].中山大学学报:自然科学版,2008,47(2):1-4.
[11] 刘再明,吴锦标.具有负顾客和抢占反馈的M/G/1随机休假排队系统 [J].应用数学,2010,23(2):244-251.
[12] 高显彩,单雪红,朱翼隽.带负顾客,反馈,服务台可修的M/G/1重试排队系统 [J].应用数学学报,2012,35(5):935-943.
[13] Adams R A.Sobolev space [M].New York: Academic Press,1975.
[14] Gupur G,Li Xuezhi,Zhu Guangtian.Functional analysis method in queueing theory [M].Hertfordshire:Research Information Ltd,2001.
[15] Engel K J,Nagel R.One-parameter semigroups for linear evolution equations [M].New York:Springer-Verlag,2000.

备注/Memo

备注/Memo:
国家自然科学基金(11371303);新疆维吾尔自治区自然科学基金(2012211A023);新疆广播电视大学基金(2013xjddkt001)
更新日期/Last Update: 1900-01-01