[1]王芳,陈勇,叶志清.一种快速高精度的改进Fitz频率估计算法[J].江西师范大学学报(自然科学版),2014,(06):605-609.
 WANG Fang,CHEN Yong,YE Zhi-qing.An Improved Fitz Frequency Estimation Algorithm with Fast Speed and High Accuracy[J].,2014,(06):605-609.
点击复制

一种快速高精度的改进Fitz频率估计算法()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2014年06期
页码:
605-609
栏目:
出版日期:
2014-12-31

文章信息/Info

Title:
An Improved Fitz Frequency Estimation Algorithm with Fast Speed and High Accuracy
作者:
王芳;陈勇;叶志清
江西师范大学物理与通信电子学院,江西 南昌,330022
Author(s):
WANG Fang;CHEN Yong;YE Zhi-qing
关键词:
频率估计自相关实时克拉美劳界
Keywords:
frequency estimationautocorrelationreal-timeCramer-Rao bound
分类号:
TN911.6
文献标志码:
A
摘要:
针对Fitz频率估计算法频率估计方差在高信噪比情况下仍与克拉美劳下限存在着较大差距问题,提出了一种改进的Fitz频率估计算法。首先定义一种广义Kay窗函数加权的修正自相关函数,然后计算修正自相关函数相位的加权和,最终得到复正弦信号的频率估计值。仿真实验结果表明:当数据长度N=24,信噪比sNr =20 dB时,改进算法的频率估计方差降低了约2 dB,且改进算法的计算复杂度与Fitz算法相当。因此,改进算法在满足实时性要求的同时,取得了更高的频率估计精度。
Abstract:
Fitz frequency estimation algorithm frequency estimation variance in the high SNR is higher and there is a big gap between the CRB. An improved Fitz frequency estimation algorithm,which first defines the modified autocor-relation function weighted by generalized Kay window has been proposed,and then calculates the sum of the weigh-ted phases of the modified autocorrelation function,finally gets the frequency estimation of the complex sinusoidal signal in AWGN. Computer simulation and analysis shows that:the frequency estimation variance of improved algo-rithm decreases about 2 dB when the data length is 24 and the signal to noise ratio is 20 dB,while the calculated a-mount of improved algorithm and original algorithm is about the same. In the other words,the proposed algorithm to meet the real-time requirement,achieves a higher frequency estimation precision.

参考文献/References:

[1] Rife D C,Boorstyn R.Single tone parameter estimation from discrete-time observations [J].Information Theory,1974,20(5):591-598.
[2] Schmidt R O.Multiple emitter location and signal parameter estimation [J].IEEE Transactions on Antennas and Propagation,1986,34(3):276-280.
[3] Roy R,Kailath T.ESPRIT-estimation of signal parameters via rotational invariance techniques [J].Acoustics,Speech and Signal Processing,1989,37(7):984-995.
[4] Quinn B G.Estimating frequency by interpolation using Fourier coefficients [J].Signal Processing,1997,28(2):113-122.
[5] 邓振淼,刘渝.正弦波频率估计的牛顿迭代方法初始值研究 [J].电子学报,2007,35(1):104-107.
[6] Tretter S A.Estimating the frequency of a noisy sinusoid by linear regression [J].Information Theory,1985,31(6):832-835.
[7] Kay S.A fast and accurate single frequency estimator [J].Acoustics,Speech and Signal Processing,1989,37(12):1987-1990.
[8] Fitz M P.Further results in the fast estimation of a single frequency [J].Communications,1994,42(2/4):862-864.
[9] 齐国清,吕健.基于自相关函数相位的频率估计方法方差分析 [J].大连海事大学学报,2007,33(4):5-9.
[10] Luise M,Reggiannini R.Carrier frequency recovery in all-digital modems for burst-mode transmissions [J].Communications,IEEE Transactions on,1995,43(234):1169-1178.
[11] Mengali U,Morelli M.Data-aided frequency estimation for burst digital transmission [J].Communications,IEEE Transactions on,1997,45(1):23-25.
[12] Cui Yang,Gang Wei,Chen Fangjiong.An estimation-range extended autocorrelation-based frequency estimator [J].EURASIP Journal on Advances in Signal Processing,2009(10):961938.
[13] 杨德钊,宋凝芳,林志立,等.基于自相关及相位差法的高精度频率估计算法 [J].北京航空航天大学学报,2011,37(8):1030-1033.
[14] Fu H,Kam P Y.Sample-autocorrelation-function-based frequency estimation of a single sinusoid in AWGN [C]// IEEE 75th Vehicular Technology Conference,Yokohama,2012:1-5.
[15] 曹燕.含噪实信号频率估计算法研究 [D].广州:华南理工大学,2012.
[16] 邹昕,叶志清.基于量子双向传态的多方量子通信网络的构建方案 [J].江西师范大学学报:自然科学版,2013,37(5):492-496.
[17] Lank G W,Reed I S,Pollon G E.A semicoherent detection and Doppler estimation statistic [J].Aerospace and Electronic Systems,1973,9(2):151-165.
[18] 吴柳雯,叶志清.用4粒子Ω纠缠态实现多粒子隐形传态 [J].江西师范大学学报:自然科学版,2013,37(6):561-564.

备注/Memo

备注/Memo:
国家自然科学基金(11164008);江西省自然科学基金(20114BAB202003);江西省光电子与通信重点实验室开放基金(2013001);江西师范大学青年成长基金(20124516)
更新日期/Last Update: 1900-01-01