SHEN Yuan,YE Shu-hong,WANG Li,et al.The Study on the Interactions between DNA and CdS-NH2 Nanoparticles[J].,2014,(06):624-631.





The Study on the Interactions between DNA and CdS-NH2 Nanoparticles
江西师范大学化学化工学院,江西 南昌,330022
SHEN Yuan;YE Shu-hong;WANG Li;CHEN Shou-hui
CdS-NH2EcoRIDNACdS-NH2-EcoRI compositesfluorescence spectroscopyCD spectroscopyatomic force microscopeagarose gel electrophoresis
采用荧光光谱、紫外光谱( UV-vis)、圆二色谱( CD)、透射电镜( TEM)、原子力显微镜( AFM)、琼脂糖凝胶电泳等技术研究 CdS-NH2-EcoRI复合物与 DNA的相互作用。研究发现:CdS-NH2纳米粒子与pBR322DNA结合后会延迟EcoRI的酶切反应。 DNA的曲率和纳米粒子的粒径都是影响结合作用的因素,曲率较大的环状DNA比线性DNA能更好地与纳米粒子结合,小粒径的CdS-NH2纳米粒子则更易结合到DNA上。并研究了DNA与CdS-NH2纳米粒子之间的作用机理。
In this work,the interaction between DNA and CdS-NH2-EcoRI composites was investigated by infrared spectroscopy,UV-vis spectroscopy,fluorescence spectroscopy,CD spectroscopy,atomic force microscope,agarose gel electrophoresis,etc. It was shown that the restriction enzyme reaction of EcoRI would be retarded after CdS-NH2 nanoparticles combined with pBR322DNA. Both the curvature of DNA and the particle size of nanoparticles are the crucial factors influencing the groove binding. Circular-like DNA with larger curvature is more easily combined with nanoparticles than linear DNA. And CdS-NH2 nanoparticles with smaller size were more easily combined with DNA. The interaction mechanism of DNA and CdS-NH2 nanoparticles was also studied in this work.


[1] Alivisatos A P.Semiconductorclusters,nanocrystals and quantum dots [J].Science,1996,271:933-937.
[2] Murray C B,Kagan C R,Bawendi M G.Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies [J].Annu Re Mater Sci,2000,30:545-610.
[3] Murray C B,Norris D J,Bawendi M G.Synthesis and characterization of nearly monodisperse CdE(E = sulfur,selenium,tellurium)semiconductor nanocrystallites [J].J Am Chem Soc,1993,115:8706-8715.
[4] 赵孝梨,陈昱瑾,董入源,等.超声辅助磁性纳米四氧化三铁催化过氧化氢降解亚甲蓝染料的研究 [J].西南大学学报:自然科学版,2012,34(5):51-56.
[5] Campbell J F,Tessmer I,Holden Thorp H,et al.Atomic force microscopy studies of DNA-wrapped carbon nanotube structure and binding to quantum dots [J].J Am Chem Soc,2008,130:10648-10655.
[6] Mirkin C A.Programming the assembly of two- and three-dimensional architectures with DNA and nanoscale inorganic building blocks [J].Inorg Chem,2000,39:2258-2272.
[7] Medintz I L,Uyeda H T,Goldman E R,et al.Quantum dot bioconjugates for imaging,labelling and sensing [J].Nat Mater,2005,4:435-446.
[8] Michalet X,Pinaud F F,Bentolila L A,et al.Quantum dots for live cells,in vivo imaging,and diagnostics [J].Science,2005,307:538-544.
[9] Bruchez M Jr,Moronne M,Gin P,et al.Semiconductor nanocrystals as fluorescent biological labels [J].Science,1998,281:2013-2016.
[10] Gerion D,Pinaud F,Williams S C,et al.Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots [J].J Phys Chem B,2001,105:8861-8871.
[11] Chan W C W,Nie Shuming.Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J].Science,1998,281:2016-2018.
[12] Wang Qiangbin,Xu Yang,Zhao Xiaohang,et al.A facile one-step in situ functionalization of quantum dots with preserved photoluminescence for bioconjugation [J].J Am Chem Soc,2007,129:6380-6381.
[13] Gao Xiaohu,Cui Yuanyuan,Levenson R M,et al.In vivo cancer targeting and imaging with semiconductor quantum dots [J].Nat Biotechnol,2004,22:969-976.
[14] Clapp A R,Medintz I L,Mattoussi H.Förster resonance energy transfer investigations using quantum-dot fluorophores [J].Chem Phys Chem,2006,7:47-57.
[15] Delehanty J B,Medintz I L,Pons T,et al.Self-assembled quantum dot-peptide bioconjugates for selective intracellular delivery [J].Bioconjugate Chem,2006,17:920-927.
[16]Susumu K,Tetsuo Uyeda H,Medintz I L,et al.Enhancing the stability and biological functionalities of quantum dots via compact multifunctional ligands [J].J Am Chem Soc,2007,129:13987-13996.
[17] Chakraborty B,Basu S.Interaction of BSA with proflavin:A spectroscopic approach [J].J Lumin,2009,129:34-39.
[18] Prado-Gotor R,Grueso E A.kinetic study of the interaction of DNA with gold nanoparticles:mechanistic aspects of the interaction [J].Phys Chem Chem Phys,2011,13:1479-1489.
[19] Guo Cunlan,Liu Zhelin,Xu Fugang,et al.Surface-relevant regulable DNA toroids induced by dopamine [J].J Phys Chem B,2009,113:6068-6073.
[20] Costa F O,Neuparth T,Helena Costa M,et al.Detection of DNA strand breakage in a marine amphipod by agarose gel electrophoresis:exposure to X-rays and copper [J].Biomarkers,2002,7(6):451-463.
[21] Kho R,Claudia L,Martinez T,et al.A simple colloidal synthesis for gram-quantity production of water-soluble ZnS nanocrystal powders [J].J Colloid Interf Sci,2000,227:561-566.
[22] Bae W,Mehra R K.Cysteine-capped ZnS nanocrystallites:Preparation and characterization [J].J Inorg Biochem,1998,70:125-135.
[23]Chen Jinlong,Zheng Aifang,Gao Yingchun,et al.Functionalized CdS quantum dots-based luminescence probe for detection of heavy and transition metal ions in aqueous solution [J].Spectrochimica Acta Part A,2008,69:1044-1052.
[24] Brus L E.Electronic wave functions in semiconductor clusters:experiment and theory [J].J Phys Chem,1986,90:2555-2560.
[25] Koneswaran M,Narayanaswamy R.Mercaptoacetic acid capped CdS quantum dots as fluorescence single shot probe for mercury(II)[J].Sensor Actuat B-Chem,2009,139:91-96.
[26] Zhang Z H,Chin W S,Vittal J J.Water-soluble CdS quantum dots prepared from a refluxing single precursor in aqueous solution [J].J Phys Chem B,2004,108:18569-18574.
[27] Steigerwald M L,Brus L.Semiconductor crystallites:a class of large molecules [J].Accounts Chem Res,1990,23:183-188.
[28] Ulrich K H.Molecular aspects of ligand binding to serum albumin [J].Pharmacol Rev,1981,33:17-53.
[29] Deepa S,Mishra A K.Fluorescence spectroscopic study of serum albumin-bromadiolone interaction:fluorimetric determination of bromadiolone [J].J Pharm Biomed Anal,2005,38(3):556-563.
[30] 倪永标,卢春,韩二伟,等.PIF同步荧光猝灭法测定Ga(Ⅲ)[J].江西师范大学学报:自然科学版,2011,35(3):269-271.
[31] Li Xiaoling,Hu Yanjun,Wang Hong,et al.Molecular spectroscopy evidence of berberine binding to DNA:comparative binding and thermodynamic profile of intercalation [J].Biomacromolecules,2012,13:873-880.
[32]Sahoo D,Bhattacharya P,Chakravorti S.Quest for mode of binding of 2-(4-(dimethylamino)styryl)-1-methylpyridinium iodide with calf thymus DNA [J].J Phys Chem B,2010,114:2044-2050.
[33]Cai Changqun,Chen Xiaoming,Ge Fei.Analysis of interaction between tamoxifen and ctDNA in vitro by multi-spectroscopic methods [J].Spectrochimica Acta Part A,2010,76:202-206.
[34] 王瑞玲,徐丽繁,邓承雨,等.光谱法研究PBBHAMF与小牛胸腺DNA的相互作用 [J].江西师范大学学报:自然科学版,2014,38(1):6-10.
[35] Neidle S.Nucleic acid structure and recognition [M].New York:Oxford University Press,2002.
[36] Silvestri A,Barone G,Ruisi G.The interaction of native DNA with Zn(II)and Cu(II)complexes of 5-triethyl ammonium methyl salicylidene ortho-phenylendiimine [J].J Inorg Biochem,2007,101:841-848.
[37] Ye Jingyong,Umemura K,Ishikawa M,et al.Atomic force microscopy of DNA molecules stretched by spin-coating technique [J].Anal Biochem,2000,281:21-25.
[38] Umemura K,Komatsu J,Uchihashi T,et al.Atomic force microscopy of recA-DNA complexes using a carbon nanotube tip [J].Biochem Biophys Res Commun,2001,281:390-395.
[39] Mahtab R,Rogers J P,Singleton C P,et al.Preferential adsorption of a “kinked” DNA to a neutral curved surface:Comparisons to and implications for nonspecific DNA-protein interactions [J].J Am Chem Soc,1996,118:7028-7032.
[40] Alison D P,Kerper P S,Doktycz M J,et al.Direct atomic force microscope imaging of EcoRI endonuclease site specifically bound to plasmid DNA molecules [J].Proc Natl Acad Sci USA,1996,93:8826-8829.
[41] Allison D P,Kerper P S,Doktycz M J,et al.Mapping individual cosmid DNAs by direct AFM imaging [J].Gemomics,1997,41:379-384.


 HUANG Mei,YE Shu-hong,SONG Yong-hai.The Study on the Interaction between DNA and CdS-COOH-EcoRI Complex[J].,2014,(06):180.


更新日期/Last Update: 1900-01-01