[1]周文英,孔令华,王兰,等.3维Maxwell方程局部1维多辛格式的能量恒等式[J].江西师范大学学报(自然科学版),2015,(01):55-58.
 ZHOU Wenying,KONG Linghua,WANG Lan,et al.The Energy Identities of the Local One-Dimensional Multisymplectic Scheme for 3-D Maxwell's Equation[J].,2015,(01):55-58.
点击复制

3维Maxwell方程局部1维多辛格式的能量恒等式()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2015年01期
页码:
55-58
栏目:
出版日期:
2015-02-10

文章信息/Info

Title:
The Energy Identities of the Local One-Dimensional Multisymplectic Scheme for 3-D Maxwell's Equation
作者:
周文英;孔令华;王兰;符芳芳
1.江西师范大学数学与信息科学学院,江西 南昌 330022; 2.南昌工学院基础部,江西 南昌 330108
Author(s):
ZHOU WenyingKONG LinghuaWANG LanFU Fangfang
关键词:
3维Maxwell方程 LOD-MS 能量恒等式 Preissman格式
Keywords:
three-dimensional Maxwell's equation LOD-MS energy conservation identity Preissman scheme
分类号:
O 241.8
文献标志码:
A
摘要:
在理想导体边界条件下,对3维Maxwell方程的局部1维多辛Preissman格式的能量守恒性质进行研究.运用能量分析法推导了2个能量恒等式,这些恒等式说明了给出的格式在所定义的离散范数下是能量守恒和无条件稳定的,数值算例验证了结论的正确性.
Abstract:
The energy conservation properties of the local one-dimensional multisymplectic(LOD-MS)Preissman scheme is mainly concerned,which is a scheme for solving the 3-dimensional Maxwell's equation under the perfectly electric conducting(PEC)boundary condition.Energy analysis method is applied to obtain two energy conservation identities which suggest that the LOD-MS Preissman scheme is unconditionally stable under the new discrete modified energy norms.Experimental results show the correctness of this conclusion.

参考文献/References:

[1] Yee K S.Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media [J].IEEE Trans Antennas Propagat,1966,14(3):302-307.
[2] Namiki T.Investigation of numerical errors of the two-dimensions ADI-FDTD method [J].IEEE Trans Microwave Theory Tech,2000,48(10):1950-1956.
[3] Zheng Fenghua,Chen Zhizhang,Zhang Jiazong.Toward the development of a three-dimensional unconditionally stable finite difference time-domain method [J].IEEE Trans Microwave Theory Tech,2000,48(9):1550-1558.
[4] Chen Wenbin,Li Xingjie,Liang Dong.Energy-conserved splitting FDTD schemes for Maxwell's equations [J].Numer Math,2008,108(3):445-485.
[5] Chen Wenbin,Li Xiang,Liang Dong.Symmetric energy-conserved splitting FDTD scheme for the Maxwell's equations [J].Commun Comput Phys,2009,6(4):804-825.
[6] Chen Wenbin,Li Xingjie,Liang Dong.Energy-conserved splitting finite difference time-domain methods for Maxwell's equation in three dimensions [J].SIAM J Numer Anal,2010,48(4):1530-1554.
[7] Gao Liping,Zhang Bo,Liang Dong.The splitting-difference time-domain methods for Maxwell's equations in two dimensions [J].J Comput Appl Math,2007,205(1):207-230.
[8] Kong Linghua,Hong Jialin,Zhang Jingjing.Splitting multisymplectic integrators for Maxwell's equation [J].J Comput Phys,2010,229(11):4259-4278.
[9] Wang Yushun,Hong Jialin.Multi-symplectic algorithms for Hamiltonian partial differential equation [J].Commun Appl Math Comput,2013,27(2):163-230.
[10] Cai Wenjun,Wang Yushun,Song Yongzhong.Numerical dispersion analysis of a multi- symplectic scheme for the three dimensional Maxwell's equation [J].J Comput Phys,2013,234:330-352.
[11] Cai Jiaxiang,Wang Yushun,Qiao Zhonghua.Multisymplectic Preissman scheme for the time-domain Maxwell's equation [J].J Math Phys,2009,50(3):1-17.
[12] 黄红,王兰.薛定谔方程的局部一维多辛格式 [J].江西师范大学学报:自然科学版,2011,35(5):455-458.
[13] 王兰,陈静.二维Schrödinger方程的多辛格式 [J].江西师范大学学报:自然科学版,2010,34(6):599-603.
[14] 童慧,孔令华,王兰.Dirac方程的紧致分裂多辛格式 [J].江西师范大学学报:自然科学版,2014,38(5):521-525.
[15] Gao Liping,Zhang Bo.Optimal error estimates and modified energy conservation identities of the ADI-FDTD scheme on staggered grids for 3D Maxwell's equations [J].Sci China Math,2013,56(8):1705-1726.

备注/Memo

备注/Memo:
国家自然科学基金(11301234,11271171);江西省自然科学基金(20142BCB23009);江西省教育厅基金(GJJ12174)
更新日期/Last Update: 1900-01-01