[1]杨淑群.认知评估中的属性关系[J].江西师范大学学报(自然科学版),2015,(02):132-137.
 YANG Shuqun.The Relationship among Attributes for Cognitive Assessment[J].,2015,(02):132-137.
点击复制

认知评估中的属性关系()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2015年02期
页码:
132-137
栏目:
出版日期:
2015-04-10

文章信息/Info

Title:
The Relationship among Attributes for Cognitive Assessment
作者:
杨淑群
福建师范大学软件学院,福建 福州 350007
Author(s):
YANG Shuqun
关键词:
认知评估 属性 先决关系 属性层级关系 蕴含关系
Keywords:
cognitive assessment attribute prerequisite relation attribute hierarchy implication relation
分类号:
B 841.7; TP 301.6
文献标志码:
A
摘要:
规则空间模型(RSM)及属性层级方法(AHM)是有较大影响力的认知诊断模型.在RSM与AHM中不可缺少属性及属性层级关系,属性层级关系为属性间的先决关系所诱导.但是,先决关系只考虑了属性之间的关系,却忽略了属性集之间存在的联系.该研究以先决关系为切入点,实例证明先决关系及其诱导的属性层级关系具有局限性,基于属性集,提出更具一般性的蕴含关系,使先决关系为其特殊形式,为当前认知诊断理论研究提供了新的研究角度.
Abstract:
The hierarchy plays a foundational role in the Attribute Hierarchy Method(AHM). Both the attributes and the hierarchy serve as the most important input variables to most cognitively diagnostic methods like Rule Space Model(RSM)and AHM. Despite the relatively well-defined logical aspects, much work remains to be done because many issues and controversies are not resolved. For example, controversy exists over how to conceptualize and describe the relationship among attributes and attributes hierarchy. Tatsuoka defined the relationship between the attributes in pairs, but she did not explain how to maturate and analyze the relationship between a set of attributes and one single attribute.The main purpose of the paper is to highlight and assassinate the limitation in the prerequisite relationship among attributes. The existence of the limitation is illustrated by a different denominators problem. In order to overcome this limitation, it is proposed that a set of combinatory attributes can be prerequisite to a single attribute as well, posing as challenges for the previously defined prerequisite relation. The new implication relation could overcome the limitation of prerequisite relation and can be viewed as a more general relation that complements and encompasses the prerequisite relation. Meanwhile, the implication relation presents a new challenge to the traditional Q matrix theory and proposes the new subject to scholars in the cognitive assessment.

参考文献/References:

[1] Leighton J P,Gierl M J,Hunka S M.The attribute hierarchy method for cognitive assessment:a variation on Tatsuoka's rule space approach [J].Journal of Educational Measurement,2004,41(3):205-237.
[2] Fu J,Li Y.Cognitively diagnostic psychometric models:An integrative review [R].2008.ETS Reseach Report.
[3] Tatsuoka K K.Toward an integration of item-response theory and cognitive error diagnosis [C]//Fredrickson N,Glaser R L,Lesgold A M,et al.Diagnostic monitoring of skills and knowledge acquisition [A].Hillsdale,NJ:Erlbaum,1990:453-488.
[4] Rupp A A,Templin J.The effects of Q-matrix misspecification on parameter estimates and classification accuracy in the DINA model [J].Educational and Psychological Measurement,2008,68(1):78-96.
[5] 左孝凌,李为鑑,刘永才.离散数学 [M].上海:上海科学技术文献出版社,1983.
[6] Ding Shuliang,Luo Fen,Cai Yan,et al.Complement to Tatsuoka's Q matrix theory [C]//Shigemasu K,Okada A,Imaizumi T,et al.New Trends in Psychometrics [A].Tokyo:Universal Academy Press,2008:417-424.
[7] 丁树良,罗芬.由偏序关系的可达阵导出Hasse图的有效算法 [J].江西师范大学学报:自然科学版,2013,37(5):441-444.
[8] 丁树良,汪文义,杨淑群.认知诊断测验蓝图的设计 [J].心理科学,2011,34(2):258-265.
[9] 丁树良,杨淑群,汪文义.可达矩阵在认知诊断测验编制中的重要作用 [J].江西师范大学学报:自然科学版,2010,34(4):490-495.
[10] 丁树良,祝玉芳,林海菁,等.Tatsuoka Q矩阵理论的修正 [J].心理学报,2009,41(2):101-112.
[11] Ganter B,Wille R.Formal concept analysis:mathematical foundations [M].Berlin:Springer,1999.
[12] Gierl M J,Wang Changjiang,Zhou Jiawen.Using the attribute hierarchy method to make diagnostic inferences about examinees' cognitive skills in algebra on the SAT [J].Journal of Technology,Learning,and Assessment,2008,6(6):1-49.
[13] Kuhn D.Why development does(and does not occur):evidence from the domain of inductive reasoning [C]//McClelland J L,Siegler R.Mechanisms of cognitive development:Behavioral and neural perspectives [A].Hillsdale,NJ:Erlbaum,2001:221-249.
[14] Kim S.Towards a statistical foundation in combining structures of decomposable graphical models [M].Yusong gu,Taejon:Korea Advanced Institute of Science and Technology,Division of Applied Mathematics,2001.
[15] Tatsnoka K K.Boolean a1gebra applied to determination of universal set of knowledge states [M].Princeton,NJ:Educational Testing Service,1991.
[16] Tatsuoka K K.Item construction and psychometric models appropriate for constructed responses [C]//Bennett R E,Ward W C.Construction versus choice in cognitive measurement [A].Hillsdale,NJ:Erlbaum,1993.
[17] Tatsuoka K K.Architecture of knowledge structures and cognitive diagnosis:A statistical pattern recognition and classification approach [C]//Nichols P D,Chipman S F,Brennan R L.Cognitively Diagnostic Assessment [A].Hillsdale,NJ:Erlbaum,1995: 327-361.
[18] Tatsuoka K K.Cognitive assessment:an introduction to the rule space method [M].New York:Routledge,2009.
[19] Tatsuoka K K,Tatsuoka M M.Spotting erroneous rules of operation by the individual consistency index [J].Journal of Educational Measurement,1983,3:221-230.
[20] Tatsuoka K K,Tatsuoka M M.Computerized adaptive diagnostic testing [J].Journal of Educational Measurement,1997,34:3-20.
[21] 涂冬波,蔡艳,戴海琦.几种常用非补偿型认知诊断模型的比较与选用:基于属性层级关系的考量 [J].心理学报,2013,45(2):243-252.
[22] Vosniadou S,Brewer W F.Mental models of the earth:a study of conceptual change in childhood[J].Cognitive Psychology,1992,24:535-585.
[23] 杨淑群,丁树良.有效对象的判定理论与方法 [J].江西师范大学学报:自然科学版,2011,35(1):1-4.
[24] 杨淑群,蔡声镇,丁树良,等.求解简化Q矩阵的扩张算法 [J].兰州大学学报:自然科学版,2008,44(3):87-91,96.
[25] Yang Shuqun,Ding Shuliang,Ding Qiulin.Incremental augment algorithm based on reduced Q-matrix [J].Transactions of Nanjing University of Aeronautics & Astronautics,2010,27(2):183-189.

备注/Memo

备注/Memo:
国家自?豢蒲Щ?30860084,60263005);教育部人文社会科学研究一般项目青年基金(10YJCXLX04);福建省自然科学基金(2013J01119)
更新日期/Last Update: 1900-01-01