[1]吴贤毅.基于贝叶斯方法的保费计算的稳健性质[J].江西师范大学学报(自然科学版),2015,(02):177-188.
 WU Xianyi.The Robustness for Premium Calculations Using Bayesian Approaches[J].,2015,(02):177-188.
点击复制

基于贝叶斯方法的保费计算的稳健性质()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2015年02期
页码:
177-188
栏目:
出版日期:
2015-04-10

文章信息/Info

Title:
The Robustness for Premium Calculations Using Bayesian Approaches
作者:
吴贤毅
华东师范大学金融与统计学院,上海 200241
Author(s):
WU Xianyi
关键词:
稳健性质 保费计算原理 ε-污染 贝叶斯方法 Esscher保费原理 损失原理
Keywords:
robustness premium calculation principles ε-contaminations Bayesian approaches Esscher premium principles loss principles
分类号:
F 840; F 224
文献标志码:
A
摘要:
探讨了3类关于保费计算原理的相关问题.首先,结合贝叶斯方法和损失原理定义了贝叶斯保费; 然后,研究了2类保费计算原理的稳健性质问题:带任意污染系数的非贝叶斯保费的稳健性质和基于ε-污染方法讨论的贝叶斯保费关于先验分布的稳健性质; 最后,运用Esscher保费原理分析了当污染在某个分布类变化时保费对污染的响应以及保费的值域.
Abstract:
Three tightly related problems regarding the premium calculation principles are considered.Firstly,Bayesian premiums are defined by using of Bayesian approaches associated with loss principles.Then,two problems regarding the robustness of premium calculation principles are investigated.One is the robustness of non-Bayesian premiums with respect to arbitrary contaminations.The other one is the robustness of Bayesian premiums with respect to the prior distributions by means of the ε-contamination arguments.Finally,the reaction of a premium with respect to the contaminations and the range of premium using the Esscher principle when the contamination distribution varies in a distribution class are discussed.

参考文献/References:

[1] Bühlmann H.Experience rating and credibility [J].ASTIN Bulletin,1967,4(3):199-207.
[2] Bühlmann H.Experience rating and credibility [J].ASTIN Bulletin,1969,5(2):157-165.
[3] Herzog T N.An introduction to credibility [M].3rd ed.Winsted:ACTEX,1999.
[4] Klugman S.Bayes statistics in actuarial science [M].Boston:Kluwer Academic Publisher,1992.
[5] Kaas R,Dannenburg D,Goovaerts M.Exact credibility for weighted observations [J].ASTIN Bulletin,1997,27(2):287-295.
[6] Landsman Z M,Makov U E.Exponential dispersion models and credibility [J].Scandinavian Actuarial Journal,1998(1):89-96.
[7] Landsman Z M,Makov U E.On stochastic approximation and credibility [J].Scandinavian Actuarial Journal,1999a(1):15-31.
[8] Landsman Z M,Makov U E.Sequential credibility evaluation for symmetric location claim distributions [J].Insurance:Mathematics and Economics,1999b,24(3):291-300.
[9] Makov U E,Smith A F M,Liu Y H.Bayesian methods in actuarial science [J].The Statistician,1996,45(4):503-515.
[10] Nelder J A,Verrall R J.Credibility theory and generalized linear models [J].ASTIN Bulletin,1997,27(1):71-82.
[11] Young V R.Credibility using a loss function from spline theory [J].Scandinavian Actuarial Journal,1997(2):160-185.
[12] Young V R.Credibility using a loss function from spline theory:parametric models with a one-dimensional sufficient statistic [J].North American Actuarial Journal 1998,2(1):101-117.
[13] Heilmann W R.Decision theoretic foundations of credibility theory [J].Insurance:Mathematics and Economics,1989,8(1):77-95.
[14] Kremer E.On robust premium principles [J].Insurance:Mathematics and Economics,1986,5(4):271-274.
[15] Künsch H R.Robust methods for credibility [J].ASTIN Bulletin,1992,22(1):33-49.
[16] Kremer E.Robust credibility via robust Kalman filtering [J].ASTIN Bulletin,1994,24(2):221-233
[17] Gisler A,Reinhard P.Robust Credibility [J].ASTIN Bulletin,1993,23(1):117-143.
[18] Gòmez-Déniz E,Hernández-Bastida A,Vázque-Polo F J.The Esscher premium in risk theory:a Bayesian sensitivity study [J].Insurance:Mathematics and Economics,1999,25(3):387-395.
[19] Huber P J.The use of Choquet capacities in statistics [J].Bulletin of International Statistical Institute,1973,45(1):181-191.
[20] Berger J,Berliner L M.Robust Bayes and empirical Bayes analysis with ε-contaminated priors [J].Annals of statistics,1986,14(2):461-486.
[21] Kamps U.On a class of premium principles including Esscher principles [J].Scandinavia Actuarial Journal,1998(1):75-80.
[22] Bühlmann M,Straub E.Glaubwurdigkrit fur schadensatze [J].Mitt Ver Schweizer Versicherungsmath,1970,70(1):111-133.
[23] Bühlmann H.An economic premium principle [J].ASTIN Bulletin,1980,11(1):52-60.
[24] Bühlmann H.The General economic premium principle [J].ASTIN Bulletin,1984,14(1):13-21.
[25] Eichenauer J,Lehn J,Retting S,et al.A gamma-minimax result in credibility theory [J].Insurance:Mathematics and Economics,1988,7(1):49-57.
[26] Sivagansan S,Berger J D.Ranges of posterior measures for priors with unimodal contaminations [J].The Annals of Statistics,1989,17(2):868-889.
[27] Lavine M.Sensitivity in Bayesian statistics:the prior and the likelihood [J].Journal of American Statistical Association,1991,86(415):396-399.

备注/Memo

备注/Memo:
国家自然科学基金(71371074);上海市哲学社会科学基金(2010BJB004)
更新日期/Last Update: 1900-01-01