[1]涂金,魏竞斯,徐洪焱.单位圆内[ p,q]-φ(r)级解析函数与亚纯函数的级与型[J].江西师范大学学报(自然科学版),2015,(02):207-210.
 TU Jin,WEI Jingsi,XU Hongyan.The Order and Type of Meromorphic Functions and Analytic Functions of [p,q]-φ(r)Order in the Unit Disc[J].,2015,(02):207-210.
点击复制

单位圆内[ p,q]-φ(r)级解析函数与亚纯函数的级与型()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2015年02期
页码:
207-210
栏目:
出版日期:
2015-04-10

文章信息/Info

Title:
The Order and Type of Meromorphic Functions and Analytic Functions of [p,q]-φ(r)Order in the Unit Disc
作者:
涂金;魏竞斯;徐洪焱
1.江西师范大学数学与信息科学学院,江西 南昌 330022; 2.景德镇陶瓷学院信息工程学院,江西 景德镇 333403
Author(s):
TU JinWEI JingsiXU Hongyan
关键词:
单位圆 亚纯函数 解析函数 [pq]-φ(r)级 [pq]-φ(r)型
Keywords:
unit disc meromorphic functions analytic functions [pq]-φ(r)order [pq]-φ(r)type
分类号:
O 174.52
文献标志码:
A
摘要:
利用Nevanlinna值分布理论对单位圆内具有相同的[p,q]-φ(r)增长级和不同型的解析函数与亚纯函数f1(z)与f2(z)经过四则运算后的[p,q]-φ(r)级,[p,q]-φ(r)下级,[p,q]-φ(r)型进行了研究,得到了一些新的结果,丰富和完善了原有的一些结论.
Abstract:
In this paper,the [p,q]-φ(r)order,lower order and [p,q]-φ(r)type of f1+f2,f1f2,f1/f2 are investigated by using the Nevanlinna value distribution theory,where f1(z),f2(z) are meromorphic functions or analytic functions with the same [p,q]-φ(r)order and different [p,q]-φ(r)type in the unit disc,and some results are obtained which enrich and improve some previous results.

参考文献/References:

[1] 杨乐.值分布理论及其新研究 [M].北京:科学出版社,1982.
[2] 仪洪勋,杨重骏.亚纯函数唯一性理论 [M].北京:科学出版社,1995.
[3] 涂金,刘翠云,徐洪焱.亚纯函数相对于φ(r)的[p,q]增长级 [J].江西师范大学学报:自然科学版,2012,36(1):1-4.
[4] Shen Xia,Tu Jin,Xu Hongyan.Complex oscillation of a second-order linear differential equation with entire coefficients of [p,q]-order [J].Advances in Difference Equations,2014:1-14.DOI:10.1186/1687-1847-2014-200.
[5] Bleaidi B.Growth of solutions to linear equations with analytic coefficients of [p,q]-order in the unit disc [J].Electronic J Diff Equ,2011,156: 1-11.
[6] Bleaidi B.Growth and oscillation theory of(p,q)-order analytic solutions of linear equations in the unit disc [J].Journal of Mathematical Analysis,2012(3): 1-11.
[7] Tu Jin,Xuan Zuxing.Complex linear differential equations with certain analytic coefficients of [p,q]-order in the unit disc [J].Advances in Difference Equations,2014:1-12.DOI:10.1186/1687-1847-2014-167.
[8] 涂金,黄海霞,徐洪焱,等.单位圆内亚纯函数与解析函数的级与型 [J].江西师范大学学报:自然科学版,2013,36(1):1-4.
[9] Heittokangas J.On complex linear differential equations in the unit disc [J].Ann Acad Sci Fenn Math Diss,2002,122: 1-54.
[10] Hayman W.On the characteristic of functions meromorphic in the unit disk and of their integrals [J].Acta Math,1964,112: 181-214.
[11] Bank S.General theorem concerning the growth of solutions of first-order algebraic differential equations [J].Composition Math,1972,25: 61-70.

相似文献/References:

[1]涂金,刘翠云,徐洪焱.亚纯函数相对于(r)的[p,q]增长级[J].江西师范大学学报(自然科学版),2012,(01):47.
 TU Jin,LIU Cui-yun,XU Hong-yan.Meromorphic Functions of Relative [p,q] Order to (r)[J].,2012,(02):47.
[2]龙见仁,伍鹏程.单位圆上高阶线性微分方程解的性质[J].江西师范大学学报(自然科学版),2012,(02):147.
 LONG Jian-ren,WU Peng-cheng.On the Properities of Solutions for Higher Order Linear Differenrial Equations in the Unit Disc[J].,2012,(02):147.
[3]肖丽鹏,李明星.单位圆内非齐次线性微分方程的振荡解[J].江西师范大学学报(自然科学版),2013,(02):166.
 XIAO Li-peng,LI Ming-xing.Oscillatory Solutions of Nonhomogeneous Linear Differential Equation in the Unit Disc[J].,2013,(02):166.
[4]金瑾.单位圆内高阶齐次线性微分方程解与不动点的研究[J].江西师范大学学报(自然科学版),2013,(04):406.
 JIN Jin.The Research on Solutions of Higher Order Homogeneous Linear Differential Equations and Fixed Points in the Unit Disc[J].,2013,(02):406.
[5]涂金,黄海霞,徐洪焱,等.单位圆内亚纯函数与解析函数的级与型[J].江西师范大学学报(自然科学版),2013,(05):449.
 TU Jin,HUANG Hai-xia,XU Hong-yan,et al.The Order and Type of Meromorphic Functions and Analytic Functions in the Unit Disc[J].,2013,(02):449.
[6]占美龙,郑秀敏.关于单位圆内亚纯系数线性微分方程解的微分多项式的值分布[J].江西师范大学学报(自然科学版),2014,(05):506.
 ZHAN Mei-long,ZHENG Xiu-min.The Value Distribution of Differential Polynomials Generated by Solutions of Linear Differential Equations with Meromorphic Coefficients in the Unit Disc[J].,2014,(02):506.
[7]曾娟娟,刘慧芳.高阶线性微分方程亚纯解的增长性[J].江西师范大学学报(自然科学版),2016,40(03):272.
 ZENG Juanjuan,LIU Huifang.On the Growth of Meromorphic Solutions of Higher Order Linear Differential Equations[J].,2016,40(02):272.

备注/Memo

备注/Memo:
江西省自然科学基金(20132BAB211002,20122BAB211005);江西省教育厅基金(GJJ14271,GJJ14272)
更新日期/Last Update: 1900-01-01