[1]乔保民,庞进丽.强阻尼波动方程的非协调元超收敛分析[J].江西师范大学学报(自然科学版),2015,(02):218-221.
 QIAO Baomin,PANG Jinli.The Superconvergence Analysis for Nonconforming Finite Element to the Nonlinear Wave Equations with Strongly Damped[J].,2015,(02):218-221.
点击复制

强阻尼波动方程的非协调元超收敛分析()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2015年02期
页码:
218-221
栏目:
出版日期:
2015-04-10

文章信息/Info

Title:
The Superconvergence Analysis for Nonconforming Finite Element to the Nonlinear Wave Equations with Strongly Damped
作者:
乔保民;庞进丽
1.商丘师范学院数学与信息科学学院,河南 商丘 476000; 2.商丘职业技术学院基础部,河南 商丘 476000
Author(s):
QIAO BaominPANG Jinli
关键词:
强阻尼 波动方程 各向异性 非协调元 误差估计 超逼近 超收敛
Keywords:
strong damping wave equation anisotropic nonconforming error estimate superclose superconvergence
分类号:
O 242.21
文献标志码:
A
摘要:
利用导数转移方法和构造插值算子技巧,讨论了强阻尼波动方程在各向异性条件下的1个非协调元逼近,给出了强阻尼波动方程在半离散格式下精确解与近似解之间的误差估计和超逼近特性.最后,利用插值后处理方法得到了方程的整体超收敛结果.
Abstract:
A nonconforming finite element is applied to the strongly damped nonlinear wave equations with semidscretization on anisotropic meshes,the error estimates and result of superclose are obtained by using some novel approaches and technique.Finally,based on the interpolated post-processing technique,the global super-convergence is derived.

参考文献/References:

[1] Webb G F.Existence and asymptotic behavior for a stro-ngly damped nonlinear wave equation [J].Canada J Math,1980,32(3):631-643.
[2] Ghidaglia J M,Marzocchia A.Long time behavior of strongly damped nonlinear wave equations,global attractors and their dimension [J].SIAM J Math Anal,1991,22(5):879-895.
[3] Ang D D,Dinh A P N.On the strongly damped wave equations [J].SIAM J Math Anal,1988,19(2):1409-1418.
[4] 郑镇汗,赵红星.一类强阻尼非线性波动方程的广义解 [J].纯粹数学与应用数学,2009,25(1):93-98.
[5] Thomee V,Xu Jinchao,Zhang Naiying.Superconvergence of the gradient in piecewise linear finite element approximation to a parabolic problem [J].SIAM J Math Anal,1989,26(3):553-573.
[6] Shi Dongyang,Mao Shipeng,Chen Shaochun.An anisotropic nonconforming finite with some superconvergence results [J].Journal of Computational Mathematics,2005,23(3):261-274.
[7] Shi Dongyang,Zhang Yiran.A nonconforming anisotropic finite element approximation with moving grids for stokes problem [J].Journal of Computational Mathematics,2006,24(5):561-578.
[8] Shi Dongyang,Wang Haihong.An anisotropic nonconforming finite element method for approximating a class of nonlinear sobolev equation [J].Journal of Computational Mathematics,2009,27(2/3):299-341.
[9] 乔保民.半线性双曲方程的一个非协调有限元超收敛分析 [J].江西师范大学学报:自然科学版,2011,35(2):131-134.
[10] Wang Ming.L䥺SymboleB@ error estimates of nonconforming finite for the biharmonic equation [J].J Com Math,1993,11(3):261-274.
[11] Shi Dongyang,Mao Shipeng,Liang Hui.Anisotropic biquadratic finite with superclose results [J].J Sys Sci Complexity,2006,19(4):566-576.
[12] 乔保民.一类非线性为双曲方程Adini元的超收敛性分析 [J].吉林大学学报:理学版,2011,49(4):638-642.
[13] 乔保民,梁洪亮.一类非线性广义神经传播方程Adini元的超收敛性分析 [J].山东大学学报:理学版,2011,46(8):42-46.
[14] 梁洪亮,乔保民.一类非线性拟双曲线方程Hermite型有限元分析 [J].河南科技大学学报,2011,32(6):84-90.
[15] 梁洪亮,赵树理.一类非线性广义Sine-Gordon方程的有限元超收敛分析 [J].四川师范大学学报:自然科学版,2012,35(5):610-614.
[16] 郭志林,陆凤玲.一类非线性广义神经传播方程非协调元超收敛分析 [J].湖南师范大学自然科学学报,2011,34(6):1-5.
[17] 任金城.Schrodinger方程各向异性有限元超收敛分析 [J].四川师范大学学报:自然科学版,2011,34(2):193-196.
[18] 徐远,孔令华,王兰,等.带有限尼项的4阶非线性薛定谔方程的显式辛格式 [J].江西师范大学学报:自然科学版,2013,37(3):244-248.

备注/Memo

备注/Memo:
国家自然科学基金(11972119);河南省自然科学基金(122300410425);河南教育厅自然科学基金(2010A110014)
更新日期/Last Update: 1900-01-01