[1]简弃非,吴昊.基于遗传算法优化的BP神经网络的PEMFC动态特性仿真研究[J].江西师范大学学报(自然科学版),2015,(03):221-229.
 JIAN Qifei,WU Hao.The Simulation Study on Dynamic Characteristics of PEMFC Based on BP Neural Network Optimized by Genetic Algorithm[J].,2015,(03):221-229.
点击复制

基于遗传算法优化的BP神经网络的PEMFC动态特性仿真研究()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2015年03期
页码:
221-229
栏目:
出版日期:
2015-05-31

文章信息/Info

Title:
The Simulation Study on Dynamic Characteristics of PEMFC Based on BP Neural Network Optimized by Genetic Algorithm
作者:
简弃非;吴昊
华南理工大学机械与汽车工程学院,广东 广州 510640
Author(s):
JIAN QifeiWU Hao
关键词:
质子交换膜燃料电池 遗传算法 BP神经网络 电压输出模型
Keywords:
PEMFC genetic algorithm BP neural network model of voltage output
分类号:
TP 391.92
文献标志码:
A
摘要:
针对一辆小型燃料电池电动车的2 kW质子交换膜燃料电池(PEMFC)动力系统,利用遗传算法优化的BP神经网络建立其电压输出特性模型,将PEMFC部分实测数据作为遗传算法优化的BP神经网络的训练样本对其进行训练,利用训练好的神经网络对电堆电压输出特性进行预测,并与实验数据进行对比,结果显示:网络预测的输出电压与实测输出电压之间的最大相对误差均保持在4;之内.
Abstract:
For a 2 kW PEMFC stack power system of a lightweight electric vehicle,using BP neural network which have be optimized by genetic algorithm,the model of the characteristic of voltage output of the stack is established,and part of the measured data of the PEMFC is taken as the training samples of the BP neural network that be optimized by genetic algorithm to train the network.Then using the trained neural network model,the output voltage of the system is predicted and compared with the test data.The result show that the maximum relative errors between the network predicted voltage and the measured output voltage are keep in 4;.

参考文献/References:

[1] 郏怡颖,赵治国.车用质子交换膜燃料电池动态建模与仿真 [J].机械与电子,2012(4):53-57.
[2] Marcos V,Moreira,Gisele E da Silva.A practical model for evaluating the performance of proton exchange membrane fuel cells [J].Renewable Energy,2009,34:1734-1741.
[3] Amphlett J C,Baumert R M,Mann R F,et al.Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell(I.mechanistic model development)[J].Electro-chemical Science and Technology,1995,142:1-8.
[4] Springer T E,Zawodzinski T A,Gottesfeld S.Polymer electrolyte fuel cell model [J].Journal of Electrochemical Society,1991,138:2334-2342.
[5] Lee J H,Lalk T R.Modeling fuel cell stack systems [J].Journal of Power Sources,1998,73:229-241.
[6] Jemi S,Hissel D,Pera M C,et al.On-board fuel cell power supply modeling on the basis of neural network methodology [J].Journal of Power Sources,2003,124:479-486.
[7] 徐腊梅.质子交换膜燃料电池模拟与优化 [M].北京:国防工业出版社,2012.
[8] Markku O,Kauko L.Validation of genetic algorithm results in a fuel cell model [J].Journal of Hydrogen Energy,2010,35:618-625.
[9] 史峰,王辉,郁磊,等.MATLAB智能算法 [M].北京:北京航空航天大学出版社,2011.
[10] Ogaji S,Singh R,Pilidis P.Modeling fuel cell using artificial intelligence [J].Journal of Power Sources 2006,154:192-197.
[11] 张德丰.MATLAB神经网络编程 [M].北京:化学工业出版社,2011.
[12] Chavez-Ramirez A U,Munoz-Guerrero R.High power fuel cell simulator based on artificial neural network [J].Hydrogen Energy,2010,35:125-123.
[13] Napoli G,Ferraro M,Sergi F,et al.Data driven models for a PEM fuel cell stack performance prediction [J].Hydrogen Energy,2013,38:628-638.
[14] 关潮辉,丁树良.基于IRT模型的BP神经网络参数估计的进一步研究 [J].江西师范大学学报:自然科学版,2014,38(4):434-436.
[15] 周开利,康耀红.神经网络模型及其MATLAB仿真程序设计 [M].北京:清华大学出版社,2005.
[16] 于鹏,王京.数据插值技术对基于遗传编程算法符号回归的影响研究 [J].江西师范大学学报:自然科学版,2014; 38(3):286-289.
[17] Saengrung A,Abtahi A,Zilouchian A.Neural network model for a commercial PEM fuel cell system [J].Journal of Power Sources,2007,172:749-759.

备注/Memo

备注/Memo:
国家自然科学基金(50930005);广东省工程研究技术中心建设(2012B070800008)
更新日期/Last Update: 1900-01-01