[1]江海峰,杨海文.有限样本递归均值调整单位根检验与Bootstrap研究[J].江西师范大学学报(自然科学版),2015,(03):270-275.
 JIANG Haifeng,YANG Haiwen.The Recursive Mean Adjustment Unit Root Test and Bootstrap Research for Finite Sample Size[J].,2015,(03):270-275.
点击复制

有限样本递归均值调整单位根检验与Bootstrap研究()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2015年03期
页码:
270-275
栏目:
出版日期:
2015-05-31

文章信息/Info

Title:
The Recursive Mean Adjustment Unit Root Test and Bootstrap Research for Finite Sample Size
作者:
江海峰;杨海文
1.安徽工业大学商学院,安徽 马鞍山 243001; 2.井冈山大学数理学院,江西 吉安 343009
Author(s):
JIANG HaifengYANG Haiwen
关键词:
递归均值调整 单位根 Bootstrap检验 蒙特卡洛模拟
Keywords:
recursive mean adjustment unit root Bootstrap test Monte Carlo simulation
分类号:
O 212
文献标志码:
A
摘要:
针对理论研究和模拟研究参数设置不一致问题,推导零均值递归均值调整单位根检验功效公式,结果表明其分布在大样本下与非零均值结果相同.为纠正临界值检验的不足,提出了3种Bootstrap样本构造方法,证明了Bootstrap方法既可以用于研究检验水平也可以分析检验功效.蒙特卡洛模拟表明,Bootstrap方法不但具有完美的检验水平和较低的水平扭曲,而且也具有功效优势; 实证研究结论也表明Bootstrap方法可以用于实际序列的单位根检验.研究结论既丰富了单位根递归均值调整检验理论,也为实证研究提供一种新检验方法.
Abstract:
To resolve the inconsistency on parameter setting between the theory research and simulation,the power formula for recursive mean adjustment unit root test with zero mean is derived,concluding that the formulae are the same to those with nonzero mean under large samples.To correct the deficiency of critic value test,three kinds of Bootstrap sample construction method are proposed and the theoretical proof shows that the Bootstrap method can both be used to study the test level and also to analyze the power.The results from Monte Carlo simulation indicate that Bootstrap method not only has perfect test level and lower level distortions,but also has advantages on power.Empirical research shows the Bootstrap method can be used to perform unit root test for actual series.This study not only enriches the recursive mean adjustment unit root test theory,but also provides a new method for empirical research.

参考文献/References:

[1] Phillips P C B.Understanding spurious regressions in econometrics [J].Journal of Econometrics,1986,33(3):311-340.
[2] Shin D W,So B S.Recursive mean adjustment for unit root tests [J].Journal of Time Series Analysis,2001,22(5):595-612.
[3] Robert T.Regression-based unit root tests with recursive mean adjustment for seasonal and nonseasonal time series [J].Journal of Business and Economic Statistics,2002,20(2):269-281.
[4] Dong Wan Shin,Seungho Kang,Man-Suk Oh.Recursive mean adjustment for panel unit root tests [J].Economics Letters,2004,84(3):433-439.
[5] Donggyu Sul.Panel unit root tests under cross section dependence with recursive mean adjustment [J].Economics Letters,2009,105(1):123-126.
[6] 史代敏,刘田.基于奇异值分解去势的非线性趋势序列单位根检验研究 [J].统计研究,2009,26(4):85-90.
[7] Basawa I V,Mallik A K,McCormick W P,et al.Bootstrap test of significance and sequential bootstrap estimation for unstable first order autoregressive processes [J].Communication in Statistcs,1991,20(3):1015-1026.
[8] Ferretti N,Romo J.Bootstrapping unit root AR(1)models [J].Biometrika,1996,83(4):849-860.
[9] Richard P.Modified fast double sieve bootstraps for ADF tests [J].Computational Statistics and Data Analysis,2009,53(12):577-594.
[10] Moreno M J R.Unit root bootstrap tests under infinite variance [J].Journal of Time Series Analysis,2012,3(1):32-47.
[11] 陶长琪,江海峰.单位根过程联合检验的Bootstrap研究 [J].统计研究,2013,30(4):106-112.
[12] 陶长琪,江海峰.单位根检验中的Wald检验量研究:Bootstrap法VS临界值法 [J].系统工程理论与实践,2014,34(5):1161-1170.
[13] 江海峰,陶长琪,陈启明.ADF模式中漂移项和趋势项检验量分布与Bootstrap检验研究 [J].统计与信息论坛,2014,29(6):3-10.
[14] Smeekes,S.Detrending Bootstrap Unit Root Tests [J].Econometric Reviews,2013,32(8),869-891.
[15] Yang Xiaorong.Bootstrap unit root test based on least absolute deviation estimation under dependence assumptions [J].Journal of Applied Statistics,2015,42(6):1332-1347.
[16] Godfrey L G,Orme C D.Controlling the significance levels of prediction error tests for linear regression models [J].Econometrics Journal,2000,3(1):66-83.
[17] Nelson C R,Plosser C R.Trends and random walks in macroeconomic time series:some evidence and implications [J].Journal of monetary economics,1982,10(2):139-162.

备注/Memo

备注/Memo:
国家社会科学基金(13BJY011);全国统计科学研究课题(2014LY041)
更新日期/Last Update: 1900-01-01